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Remarks on Boolean products

StaNLEY BURRIS and HEINRICH WERNER

In [9] Rosenstein showed that GL,(R) (the group of invertible 2 X 2-matrices
with entries from R), for R a Boolean ring, is isomorphic to the Boolean power
GL,(2)[X(R)],* 2 being the two-element Boolean ring and X(R) being the
Boolean space of maximal ideals of R. The proof used a considerable amount of
computation, and was subsequently simplified, and generalized to GL,(R), by
Gonshor [6).T In §1 we will prove results which are yet more general, and with
methods which are quite straightforward. In §2 we formulate a generalization of
Comer’s study of the connection between factor congruences and sheaf represen-
tations. Using the results of §2 it is possible to show that (up to isomorphism) the
Boolean products of an ¥3 class X of algebras with an encoding formula form an
elementary class, and it is finitely axiomatizable if X is finitely axiomatizable and
there are only finitely many fundamental operations—this improves on results
obtained in [4], and gives a routine method for axiomatizing numerous model-
complete theories of Boolean products studied by Comer, Macintyre and
Weisspfennig (see [4]). Finally we apply this result to some classes of projective
special linear groups.

1. Boolean product representations of linear groups

The operator I' (the formation of Boolean products) was introduced in [4] as a
simple alternative to sheaf constructions over Boolean spaces. For the conveni-
ence of the reader we will repeat the definition below. First, if ¥ is a class of
first-order structures and A is a subdirect product of members {A,;};,.; from %
then, for ®(u,, ..., u,,) a first-order formula and f,,...,f.€ A let

n(‘p(fh = ,fm)llz{lEI I Ai ':(p(fl(i); L ] fm(i))}

1 We first learned of the results for GL,(R) from Sabbagh.
Presented by G. Griitzer. Received January 10, 1977. Accepted for publication in final form
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We will often abbreviate &(f,,...,f,) by d’(f), etc. f JcI and fe A let f|; be
the restriction of f to J. For X a Boolean space define X* to be the Boolean
algebra of clopen subsets of X.

For X a class of first-order structures we sayA € I'(¥X) if

(1) A is a subdirect product of members {A,},.x of X, and X can be endowed
with a Boolean space topology such that '
2) [®(fy, ..., fn)] is an open subset of X for f,,...,f.€A and & atomic,
and _
(3) (Patchwork Property) if f,ge A and Ne X* then f|y U g|x_n € A.

If we are dealing only with algebras (i.e. no fundamental relations) then (2) can be
replaced by :

(2) [f =gl is open for all f,ge A.

If A e'(¥) then we use X(A), rather than X, to denote the underlying Boolean
space. An embedding «:B — Il .x A, gives a Boolean product representation if
a(B) is a subdirect product of the {A,}, .x such that (2) and (3) hold. The simplest
example of a Boolean product is a bounded Boolean power B[ XT*, the algebra of
continuous functions from X to B, where X is a Boolean space and B is given the
discrete topology (see [3]). The following elementary lemma is quite useful.

LEMMA 1.1. If A €I'(B), say A < B*, and A contains the constant functions
of B*, then A =B[XT]*.

Proof. For be B let g, be the constant function from X to B with value b.
Then, for fe A and beB, f'(b)=[f=g], an open subset of X by (2), hence
f € B[XT*. Conversely, if fe B[XT* then there are b,,..., b, €B for some n<w
and Ny,...,N,€X* such that f=g, n,U "+ Ugyn, so by (3) fe A.

If R is a commutative ring with unity (we assume that our language has a
constant symbol 1) let M, (R) be the multiplicative monoid of n x n-matrices (ry)
with entries from R. Then let GL,(R) be the group of invertible matrices in
M, (R), let SL,(R) be the subgroup of GL,(R) consisting of those matrices with
determinant 1, and if Z(SL,(R)) denotes the center of SL,(R) define PSL,.(R) to
be SL,(R)/Z(SL,.(R)). For (r;)eSL,(R) we use [(r;)] to denote the coset
(r;)/Z(SL,(R)) in PSL,(R).

THEOREM 1.2. Let X be a class of commutative rings with unity and suppose
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ReI'(X). Then the following maps give Boolean product representations, for
l1=n<we:

a:M,(R)— [ M.(R,), where a(r)(x)=(r,(x)),

xeX(R)

B:GL,(R)— [] GL.(R.), where B(r;)(x)=(r;(x)),

xeX(R)

y:SL.(R)— [ SL.(R.), where v(r)(x)=(ry(x))

xeX(R)

and
8:PSL,(R)— [I PSL.(R.), where 8[(r))(x)=[(r(x))].

xeX(R)

Proof. We will consider only the cases GL,(R) and PSL,(R), the others being
handled in a similar fashion.

If (r;) € M, (R) then (r) is invertible in M, (R) implies (r;(x)) is invertible in
M, (R,) for xe X(R). Hence B, : GL,(R)— GL,(R,) defined by B, (r;) = (r;(x))
is a (well-defined) homomorphism. We need to prove that each (3, is surjective, so
suppose x is given and (s;(x))€ GL,.(R,) for some (s;)e M,(R). Let I be the
identity matrix of M, (R), I, the identity matrix of M,(R,). Choose (t;) € M, (R)
such that (s;(x))(t;(x)) = I.. Then

U=lG)e)=1= N Y st =44,

=i, js=nll1<k=n

an open subset of X(R), where A; is the Kronecker delta function on R. Choose
NeX(R)* such that xe Nc U, and let (§;)=(sy)IxUI|x®r)~, and (fa;) =
)NV I|xr)y-n- Clearly (i) - (t;) =1, hence (§;)€ GL,(R) and B, (3;) = (s;(x)).
This gives property (1) for B(GL,(R)). For (2) suppose (r;) and (s;)€ GL,(R).
Then

[B(r)=BG)I= -N lIri,' =s;1,

1=i, j=n
an open subset of X(R). And for (3), if Ne X(R)* then

B(r)In U B(sy)|xr)—~ = B(FijIn U 85 xr)-n) € B(GL, (R)).
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Next, assuming we have proved the result for SL,(R), we have (r;) is in the
center of SL,(R) iff each (r;(x)) is in the center of SL, (R,) (this follows solely
from the subdirect representation using y). Hence 8, from PSL,(R) to PSL,(R,)
defined by 8.[(r;)]=[(r;(x))] is a surjective homomorphism as v, is surjective and
Z(SL,(R)) = v:'Z(SL.(R,)), so we have property (1) for 8(PSL,(R)). For (2)
suppose (r;), (s;;) € SL,(R). Then, in §(PSL,(R)),

ls[(rif)] = 6[(35)1“ ={xe X(R) | (i (x))(s; (x)) '€ Z(SL.(R)))}.

Now since for any (;) € SL,(R), (t;(x))€ Z(SL, (R,)) iff (t;(x))=a - I, for some
a € R, hence

{(xeX(R) | (t(x) € Z(SLu (R} = N [ty = 01N Tt =1;1,

an open subset of X(R). For (3) let Ne X(R)* and (ry), (s;) € SL,(R). Then
S[(r)]In U 8[(si)]lxr)-~n = 8[(ri)|n U (5ij)|x(r)-n)-

COROLLARY 1.3. For R any commutative ring with unity and X any
Boolean space we have, for 1=n<w,

(@) M, (R[XT*) =M, (R)[XT*

(b) GL,(R[XT*)=GL,(R)[XT",

(c) SL,(R[XT*)=SL,(R)[XT*
and

(d) PSL,(R[XT*)=PSL,(R)[XT*.

Proof. All are easy consequences of Lemma 1.1 and Theorem 1.2.

Remark 1. Letting 2 be the two-element ring we have from Corollary 1.3(b)
GL,(2[XT)=GL,(2)[X]*, which is Gonshor’s main theorem, and for n=2,
Rosenstein’s theorem, as mentioned in the introduction.

Remark 2. For p a prime number let p be the Galois field of order p. Then,
from [1], if R is a commutative ring with unity satisfying x* = x one has, for some
X, R=p[XT*, and thus M, (R)= M, ()J[XT*, ..., PSL,(R)=PSL,(p)[ XT*.

For model-theoretic work we are usually more interested in the Boolean
product operator I'* which is the same as I' except (2) is replaced by

(2%) [®(f))e X*for f from A and P atomic.
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Remark 3. If we replace I"' by I'” in Theorem 2.1 then the maps «, 8, ¥ and 8
give Boolean product representations satisfying (2%).

2. Congruences and Boolean products

In [5] Comer showed the connection between Boolean lattices of factor
congruences and Boolean product representations. However, for the purpose of
giving first-order descriptions (see §3) it is important to be able to use only certain
sublattices of this Boolean lattice.

Let A be a given algebra and Con (A) its lattice of congruences, with A
being the least and V the greatest members of Con (A). Suppose we are given a
sublattice L of Con (A) such that

@ AelL,
@ UL=V,
(iii) The congruences of L permute (ie. 0,,0,eL=>0,°0,=0,°86,)
and
(iv) L is a relatively complemented distributive lattice.

Let X; ={m| m is a maximal ideal of L}U{L}, and let T be the topology on X;
generated by B={N, | 0 L}U{D, | 6 € L}, where N, ={me X, |6em} and D, =
X, —N,.

For me X, let A, =A/Um.

THEOREM 2.1. Given an algebra A and sublattice L of Con (A) satisfying
(i)—(iv) above, the canonical map

a:A—- [ A.

meX;

gives a Boolean product representation of A. a(A) will satisfy (2*) iff for each
a,be A there is at least 6L such that {a,b)c@; and if (2*) holds then
[ea = ab] = N, where 8 is the least congruence of L with {a, b)€ 6.

Proof. That « is a Boolean product representation readily follows from Wolf’s
result using the lattice L’ obtained from L by adjoining a unit to L and using X,
as a set of prime ideals of L'. The hull-kernel topology on X is the same as the
topology generated by B since N, = U{D,\o| ¢Z 6}. For a, b€ A it is clear that
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[aa = ab]= U{N, | (a, b)e 8 € L}, hence if [aa = ab] is clopen then by compact-
ness there is a 6 € L such that [aa = ab] = N,, so 0 is the smallest member of L
containing (a, b); and conversely, if 6 is the smallest member of L containing
(a, b) then [aa = ab] = N,.

3. Encoding formulas and elementary classes of Boolean products

A class X of algebras is elementary if it is the class of all algebras satisfying
some set of first-order sentences, and X is V3 if these sentences can be chosen as
V3 sentences. In this section we will show that for certain V3 classes X of algebras
the class II'(¥) is elementary. The next lemma is a basic tool.

LEMMA 3.1. Let (W) be a formula of the form 35W¥ (%, w) with ¥ a conjunct ’
of atomic formulas. Then for BeT*(X) and § in B, -

(i) [@(8)] is an open subset of X(B),
and
(i) BFE®(g) iff [®(8)]=X(B).

Proof. (i) is immediate from [®(g)]= U{I¥(f, §)]|f is in B}. For (ii), the
direction (=) is true because & is positive. For the converse suppose [P (g)]=
X(B). Then one can use the compactness of X(B) along with the Patchwork
Property to find a f such that [¥(f, §)]= X(B). But then BF¥(f, g), hence

BE®(g).
Define P; to be the set of all primitive positive formulas with 4 free variables,
i.e. all formulas of the form 33® (3, u,, . . ., u,) where @ is a conjunct of atomic

formulas. A formula e € P} is an encoding formula for a class ¥ of algebras if
XEe(u,u',v,v) e (u=u"—v="0"). Given € P; let ¥, be the largest class of
algebras for which ¢ is an encoding formula (this class is never empty). Our first
objective is to show that II'*(¥,) is an elementary class. For BeI'*(%,) and
h,keB let 8" ={(f,g)e B*|[n=k]<[f=gl}. One easily sees that 8" is a
congruence on B, and the collection of all 6"* permute and form a relatively
complemented distributive sublattice of Con (B), they include A, and their union
is V, so they satisfy (i)—(iv) of §2. For AeX, one has, by definition, Ak
e(u,u’,v,v") o (u=u'—v=1’), and hence, using Lemma 3.1, Bke(h, k, f, g) iff
(f,g)e 6™

Now let A be any algebra, and for a,be A define the relation 6, =
{(c,dye A%| AFe(a, b, c, d)}. Let us consider the following statements (it is obvi-
ous that the portions in quote marks can be put into first-order form), all of which
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are true of I (3,):

{®:};c: says “for all a, b, 6, is a congruence containing {(a, b)”
¥, says ‘“{a,b)e,>6,<6," '
¥, says ‘“the set of 6,, permute and form a relatively complemented
distributive lattice which includes A.”

If the language of our algebras has only finitely many fundamental operation
symbols then we can replace {®,},.; by a single axiom .

LEMMA 3.2. For e Py, IT*(¥,) is an elementary class axiomatized by
{DhierU{W, ¥}

Proof. We have just noted that I (%, ) satisfies {®;};c;U{¥;, ¥,}. Solet A be
any algebra satisfying these axioms, and let L ={6,,|a, be A}. Then from
Theorem 2.1 the map

a:A—hnA.,.

meX,

gives a Boolean product representation of A satisfying (2%), so we only need to
show that each A, €X,. For f,g,h,ke A we have AFe(f, g h, k) iff 6, <6
(using ¥,), hence iff [af = ag] < [ah = ak] (by Theorem 2.1). So for a, b, ¢, d € A,
with A,Fa=b — c=d use the Patchwork Property to find f, g h,ke A with
[of = agl < lah = ak], af(m)=a, ag(m)=>, ah(m)=c and ak(m)=d. Then AF
e(f, g h, k), hence as ¢ is positive, A Fe(a, b, ¢, d). Conversely, given a,b,c,de
A, with A.,Fe(ab,c,d), first choose f',g' h',k'e A with af(m)=
a,...,ak'(m)=d. Then, as [e(af’, ag’, ah’, ak’)] is an open subset of X;, choose
Ne Xt such that me Nc[e(af, ag’, ah’, ak’)] and then use the Patchwork
Property to find f, g, h, k€ A with

afl=af|n, ..., ak|ly=ak'|y and af|x_n=ag|x-~n=ah|x_n=ak|x_n.

From the {¥;},.; we know AFe(f, f,f, f), hence X; =[e(af, ag, ah, ak)], and then
by Lemma 3.1, AFe(f, g, h, k), so [af = ag] = [ah = ak], and this implies A, Fa =
b—c=d.

LEMMA 3.3. Suppose € € P;. For every Y3 sentence & one can (effectively)
find an V3 positive sentence ® such that for Ac¥,, AE® iff Akd or #A=1.
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LEMMA 3.5. For e P; and A eT*(¥,) we have, for h, k€ A, i€,
(a) AFe(a,b,c,d) iff [a=bls[c=4d]

and
(b) A FVwVw'[il; e(hy, ki, w, w) > w=w'] iff

X(A)= “El_J]r [k = k1.

Proof. (a) is immediate from Lemma 3.1, and then (b) is an easy exercise with
the Patchwork Property.

If ¥ is an V3 sentence in the form

vids V & (p;=4q;)

l=i=njel;

and £ € P} let ¥* be:

Vi3dz, 3z} ---32,32,38, - - - 3g.{ & & e(z;, z{, py(u, &), 9;(u, &))

l=i=njel;

&VwYW[ & e(z, zl, w,w)—=>w=wl.

1=i=n

LEMMA 3.6. For e € P; and ¥ an Y3 positive sentence (in the above form)
we have, for A eI (¥,), [¥]= X(A) iff AE¥*.

Proof. This is an obvious combination of Lemmas 3.4 and 3.5.

For € € P let A be the sentence
JuIu'VoVo'e(u, u’, v, v').
LEMMA 3.7. ForeeP; and Ael(X,), AFA iff Z(A)e X(A)*.

Proof. (=») Choose f,f'e A such that AFEVuVv'e(f,f,v,v’), hence
VoVv'e(f, f, v, v)] = X(A), thus [f=f]=Z(A).
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(&) Choose f, f' such that Z(A)=[f=f]. Then X(A)=[VoVv'e(f, ', v, v")],
so AEA.

THEOREM 3.8. Let ¥ be an V3 class axiomatized by {Z,};., and suppose ¢ is
an encoding formula for ¥. ThenII™(¥) is an elementary class axiomatized by

(@) {D}icrU{¥,, Y3 U{E))%),es if there is a one-element algebra in X,
or

(b) {d)i}lefu{wh ';’2, A} U{(Q[)S}IEJ Olherwise.

If the language of ¥ has finitely many operation symbols then II*(¥X) is finitely
axiomatizable iff H is finitely axiomatizable.

Proof. Just apply Lemmas 3.2, 3.3, 3.6 and 3.7 for (a), (b). For the last claim
about finite axiomatizability note that X is definable in II'* (¥) by the statement

e(uu',v,v)e(u=u"—-v="2").

Now let us look at some classes X which have an encoding formula.

(a) A formula 7€ Py is a discriminator formula for ¥ if XFr(u, u’,v,v") o
(u=u'"&v=0") or (u#u' & u=v'). In [4] we proved that if 7 is a discriminator
formula for ¥ then IT(¥X) is an elementary class, provided X is an elementary
class. Our axiomatization of II'* (%) included axioms for ISPR(¥), hence we were
unable to conclude that II'(¥X) is finitely axiomatizable if there are only finitely
many fundamental operations and ¥ is finitely axiomatizable. However now we
are in a position to make this conclusion, for letting e(u, u’,v,v") be
Iw[r(u, u', v, w) & 7(u, u’,v’, w)] we have an encoding formula for ¥, so
Theorem 3.8 applies. In our study of model companions in [4] we were particu-
larly interested in showing that IT§(¥)=KA eI*(%)|X(A) has no isolated
points} is an elementary class. Since II'§(¥) is definable in I (¥) by “there are
no atoms 6,, in L,” it is clearly also an elementary class, and finitely axiomatiza-
ble if there are only finitely many fundamental operations and X is finitely
axiomatizable.

(b) A formula € P; is a principal congruence formula if it is of the form

Io[u, = Po(“c.,(o» D) & u,= pn(“cr..{l)’ ) & o & 1P.'('&r.ms 0)

=i=n-—

= P1+1(uo-...{o)’ )]

where {0;(0), 0;(1)}={3, 4} for 0<i=<n, and p,,...,p. are polynomials. 7 is a
principal congruence formula for ¥ if, in addition, for Ae¥ and a,b,c,de€ A,
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AFEm(a,b,c,d) iff (a, b)€ 8(c, d). If 7 is a principal congruence formula for X and
X is a class of simple algebras then trivially £(u, u’, v, v")=m(v,v’, u, u’) is an
encoding formula for X. The following lemma gives a useful test for the existence
of a principal congruence formula.

LEMMA 3.9. Let & be a finite set of finite simple algebras such that

(i) #Con(SxS)=4for §,S'e¥,
and
(i) Con (S, Xx--+x8,) is a modular lattice for

S$1...,8. €5, n<w.

Then there is a principal congruence formula m for &.

Proof. Let us suppose that ¥={S,, ..., S.}. Then choose elements f, g, h, k €
([T1=i<kS:)™, where m = (#S, X - - - X #8,)*, such that for 1=<i =<k, {(f(§)(i), g()(i),
h(§)(i), k(j)(i)) | 0=j=m} is precisely the set {{(a, b, ¢, d)e S} | c =d — a =b}. The
assumptions (i) and (ii) guarantee that # Con [([T,<i<xS)™]=2"" (see [2]), hence,
as h(j)(i) = k()(D) = f()() = g()(i), (f, g) € O(h, k), so there is a principal congru-
ence formula 7 such that =(f, g h, k) holds, and this must be a principal
congruence formula for &.

THEOREM 3.10. If & is a finite set of finite simple algebras satisfying (i)-(ii)
in Lemma 3.9 then I (%) is an elementary class which is finitely axiomatizable if
there are only finitely many fundamental operations. '

Proof. Just combine Theorem 3.8 with Lemma 3.9.

LEMMA 3.11. If A is a finite algebra then Il (A)=KA[XT* | X is a Boolean
space}.

Proof. Suppose A has universe {a, ..., a,}. Select finitely many fundamental
operations f,,...,f, such that every bijection a of A perserving f,,...,f is
actually an automorphism of A. Then let A(u,, . ..,'u,) be the set of those atomic
or negated atomic formulas ®(u,, ..., u,), each involving at most one extra-
logical constant selected from f,, ..., f, and such that AF®(a,,...,a,). Then,
for BeI'*(A) we have X(B)=[3id & A(d)], so by Lemma 3.1 there are
fi, - -» fa € B with BE& A(f,, ..., f,). Let g be the constant map in A[X(B)J*
with value a;, 1<i=<n. Then for N,,..., N, € X(B)* with X(B)= <=, N; and
N;NN, =@ fori<jdefine a:(fy |n,U- - -Uf, In) = (& In,U" - -Ug, |n.). @ is the
desired isomorphism from B to A[X(B)J*.
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COROLLARY 3.12. Let R be an elementary class of rings with unity satis-
fying x* =x for p a prime. Then, for (n, p)€{(2, 2),(2, 3)}, I{PSL,(R) | ReR)) is
an elementary class of groups which is finitely axiomatizable if R is finitely
axiomatizable.

Proof. For (n,p)£{(2,2),(2,3)} the group PSL,(p) is a simple non-abelian
group (see [7]). By Remark 2 of §1 and Corollary 1.3 I{PSL,(R) |REx? =x})=
I{PSL,(@®)[XT*| X is a Boolean space}), and by Lemma 3.11 this is just
Il (PSL, (p)), a finitely axiomatizable elementary class by Theorem 3.10. Using
an encoding formula ¢ for PSL, (p) one can interpret X* in PSL, (p)[XT* (using
equivalence classes of ordered pairs). So if @ is an axiom of R first apply an
Ershov translation (see [3] and [4]) to obtain a sentence ®* in the language of
Boolean algebras such that p[XT*F® iff X*F®*. Then, relativizing ®* to the
interpretation of X* in PSL,(p)[X]* one obtains a sentence @, such that
PSL,(p)[XT*E®, iff p[XT*E®. Thus I{PSL.(R)|Re®R}) is definable in
I (PSL,(p))- '
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