COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI

29. UNIVERSAL ALGEBRA, ESZTERGOM (HUNGARY), 1977.

Remarks on reducts of varieties

Research supported by NRC Grant A7256 and a Summer Research Institute Grant.

Stanley Burris

There are a number of interesting classes of algebras which, although not themselves varieties, can be advantageously studied as reducts of varieties. In § 1 we look at strict Horn classes and reducts of varieties, with special attention to the possibility of finding constructive methods of answering some fundamental questions. This leads to § 2 where we examine when a quasi-variety is actually a variety. Finally in § 3 certain strict Horn classes are shown to be homomorphism-preserving reducts of varieties. The examples presented in this paper are not new, but the approach via Skolemization, etc. offers a unifying perspective.

§ 1. Strict Horn Classes

A class **K** of algebras is a reduct of a class **K'** of algebras (or **K'** is an expansion of **K**) if **K** is obtained from **K'** by forgetting some of the fundamental operations. For example Abelian groups form a reduct of the class of rings. Unfortunately a reduct of a variety may not even be an elementary class (Kogalovskii [10]). Indeed, the situation is even worse, as we shall see in Theorem 2. The negative results on algorithms (such as this one) are based on Lemma 1. If Π is a finite set of semi-group relations with an unsolvable word problem and \cdot is the semigroup operation let Π_{ab} be the set of equations $\Pi \cup \{x \cdot (y \cdot z) = (x \cdot y) \cdot z, x \oplus a = x, x \oplus b = y \oplus b\}$ (in the language with two binary operations \cdot and \oplus , and with nullary operations consisting of the generators of the semigroup belonging to Π), where a and b are words in the original semigroup.

Lemma 1.1) There is no algorithm to determine if $\Pi_{ab} \vdash x = y$.

¹⁾ An excellent survey of such decidability questions is given in McNulty [13].

Proof. It is not difficult to see that $\Pi_{ab} \vdash x = y$ iff $\Pi \vdash a = b$, and the latter is an undecidable question.

Theorem 2. There is no algorithm by which one could determine from any finite set of equations Σ and any reduct of the variety defined by Σ whether or not this reduct is an elementary class.

Proof. Let Σ_R be a finite set of equations defining rings, and form $\Sigma = \Pi_{ab} \cup \Sigma_R$ (we assume that the fundamental operations symbols of Π_{ab} and Σ_R are distinct). Let K be the reduct of the variety defined by Σ obtained by dropping all the ring operations except multiplication. If $\Sigma \vdash x = y$ then any infinite multiplication semigroup which is a reduct of a ring will also be a reduct of an algebra in K as every ring R can be arbitrarily juxtaposed on any model of Π_{ab} of the same cardinality to obtain a model of Σ (because the operation symbols in Π_{ab} and Σ_R are distinct). However, the class of multiplicative semigroups which are reducts of rings do not form an elementary class (see [10]), so there is an infinite semigroup S which is not a reduct of any ring, but it is elementarily equivalent to a reduct of a ring. By Shelah [17] there is an index set I and ultrafilter \mathcal{U} such that S^I/\mathcal{U} is a reduct of a ring (note that the multiplicative semigroup reducts of rings are closed under ultrapowers). Choose a model A of Π_{ab} of the same cardinality as S, and juxtapose S arbitrarily on A to form B. Then $B^{I}/\mathcal{U} \in K$. Now $B \notin K$, hence K cannot be an elementary class. But then clearly K will be an elementary class iff $\Sigma \vdash x = y$, and the latter obviously holds iff $\Pi_{ab} \vdash x = y$, and by Lemma 1 there is no algorithm for this last question.

If, nonetheless, we restrict our attention to those reducts of varieties which do form elementary classes we have a rather satisfying result. First recall (see [5]) that a strict Horn sentence (in prenex form) looks like

$$Q_1 x_1 \dots Q_n x_n \big\{ \underset{i}{\&} \, [(\underset{i}{\&} \, p_{ij} = q_{ij}) \to p_j = q_j] \big\},$$

where each Q_i is either \forall or \exists . If there is exactly one *j*-index and all the quantifiers are universal it is called a *quasi-identity* (see [11]).

Theorem 3. For an elementary class **K** of algebras the following are equivalent:2)

- (a) K is the reduct of some variety,
- (b) K can be axiomatized by strict Horn sentences,
- (c) K is closed under reduced products (including the empty product).

Proof. The equivalence of (b) and (c) is exercise 6.2.8 of [5]. If (a) holds then clearly (c) holds (we do not need the fact that K is elementary for this implication). So suppose (b) holds, and let Σ be a set of strict Horn sentences axiomatizing K.

²⁾ Our proof of (b)⇒(a) is essentially that of T. Evans [6]. See McKenzie's fascinating paper [12] for techniques based on the discriminator function.

By Skolemizing the sentences in Σ we obtain Σ^* , a set of strict universal Horn sentences such that **K** is a reduct of the models of Σ^* . Without loss of generality we can replace Σ^* by a set Σ^{**} of quasi-identities. Expand the language of Σ^{**} by one new (2n+1)-ary function $f_n(x_1, y_1, ..., x_n, y_n, u)$ for each $n \ge 1$, and let Σ^{***} be the set of identities

$$f_n(z_1, z_1, z_2, z_2, ..., z_n, z_n, u) = u \quad (n \ge 1)$$

plus all identities

$$f_n(p_1, q_1, ..., p_n, q_n, p) = f_n(p_1, q_1, ..., p_n, q_n, q)$$

where $p_1=q_1\&...\&p_n=q_n\to p=q$ is in Σ^{**} . Now one only needs to verify that reducts of algebras in Σ^{***} obtained by dropping the f_n 's actually satisfy Σ^{**} (which is rather evident), and that any model of Σ^{**} can be expanded to a model of Σ^{***} (say by defining $f_n(a_1, a_1, ..., a_n, a_n, b)=b$, and otherwise $f_n(a, ...)=a$). Thus **K** is a reduct of the variety defined by Σ^{***} . (If Σ were finite then we would only require finitely many f_n 's, hence Σ^{***} would also be finite.)

An easy application of this general result is Grätzer's characterization of the spectra of varieties³). The *spectrum* of a variety is the set of cardinalities of the finite algebras in the variety.

Corollary 4 (Grätzer [8]). Let S be a subset of the natural numbers. Then S is the spectrum of a variety iff $1 \in S$ and S is closed under multiplication.

Proof. (\Leftarrow) Let **K** be the class of sets which are either infinite or whose cardinality is in S. Then **K** is an elementary class closed under reduced products, hence **K** is a reduct of some variety **V**. But then S is the spectrum of **V**.

§ 2. Quasi-Varieties

A quasi-variety (see [11]) is an elementary class which can be axiomatized by quasi-identities (see § 1). If we start with a set Σ of strict Horn sentences and Skolemize we (essentially) obtain a set Σ^{**} of quasi-identities (this is of course the notation used in the proof of Theorem 3). In many cases Σ^{**} already defines a variety – if so this gives a more natural variety of which the class defined by Σ is a reduct. A non-trivial example of this is the class K of pseudo-complemented semilattices with zero $(S, \wedge, 0)$ axiomatized by

- (S1) $x \wedge (y \wedge z) = (x \wedge y) \wedge z$
- (S2) $x \wedge y = y \wedge x$
- (S3) $x \wedge x = x$
- (S4) $\forall x \exists y \forall z [x \land y = 0 \& (x \land z = 0 \rightarrow z \land y = z)].$
- 3) The usual proof is based on the study of primal clusters.

Skolemizing we obtain (S1)-(S3) plus

(S4')
$$x \wedge x^* = 0$$

(S5')
$$x \wedge z = 0 \rightarrow z \wedge x^* = z$$
,

a quasi-variety which is indeed a variety. This is not an obvious fact; it was first pointed out in Balbes and Horn [2]. (See Sankappanavar [16] for a historical discussion.) We now look at the problem of determining when a quasi-variety is a variety. (One of the most interesting results in this direction is Ol'šanskii's [15] characterization of finite groups G such that the quasi-variety generated by G is a variety.)

Theorem 5. There is no algorithm to determine if a finite set of quasi-identities defines a variety.⁴)

Proof. For Π as before let Σ be $\Pi_{ab} \cup \{x+y=y+x\rightarrow x=y\}$. If $\Sigma \not\vdash x=y$ let A be a model of Π_{ab} which is not simple, and choose distinct elements a_0 , a_1 of A such that for some congruence θ , $[a_0]_{\theta} = [a_1]_{\theta}$ and A/θ has at least two elements. Let \leq well-order A and define the operation + on A by $x+y=a_0$ if $x\leq y$, $x+y=a_1$ if y<x. The resulting algebra A' is a model of Σ , and θ is a congruence of A'. As $A'/\theta \models x+y=y+x$ but $A'/\theta \not\models x=y$ it follows that Σ does not define a variety. Consequently we see that Σ will define a variety iff $\Sigma \vdash x=y$, hence iff $\Pi_{ab} \vdash x=y$, and again by Lemma 1 this is undecidable.

In spite of Theorem 5 we can still find some useful positive results. From basic facts in universal algebra (see [9]) we know that any quasi-variety \mathbf{Q} contains the free algebras of the variety generated by \mathbf{Q} . If Σ is a finite set of quasi-identities let $\widetilde{\Sigma}$ be the subset of quasi-identities which are not already identities, and let $F(\widetilde{\Sigma})$ be the free algebra in the quasi-variety defined by Σ which is freely generated by $n(\widetilde{\Sigma})$ elements, $n(\widetilde{\Sigma})$ being the maximum number of variables in a quasi-identity from Σ .

Theorem 6. There is an algorithm from which one can determine from any finite set Σ of quasi-identities for which $F(\widetilde{\Sigma})$ is a finite algebra if Σ determines a variety. This algoritm does not give an erroneous result when starting from a Σ such that $F(\widetilde{\Sigma})$ is infinite, but maybe it does not terminate.

Proof. A universal sentence Φ with n quantifiers will hold in a variety V iff it holds in the n-generated algebras of the variety. Thus to see if Σ defines a variety it suffices to construct $F(\tilde{\Sigma})$ and see if all the homomorphic images of $F(\tilde{\Sigma})$ satisfy $\tilde{\Sigma}$. If so then Σ defines a variety, otherwise not. [We should point out that if we know $F(\tilde{\Sigma})$ is finite, then, without even being given a finite bound on the size of $F(\tilde{\Sigma})$, we can still construct $F(\tilde{\Sigma})$ by enumerating the equational consequences $p(x_1, ..., x_n) = q(x_1, ..., x_n)$ of Σ , where $n = n(\tilde{\Sigma})$, and checking

⁴⁾ Actually a deeper result is proved in McNulty [14] for universal Horn theories.

down the list until we find a collection of polynomials $p_1, ..., p_l$ containing $x_1, ..., x_n$ and such that, modulo Σ , it is closed under the fundamental operations. This will give a finite algebra A which, after factoring by the smallest congruence θ such that $A/\theta \models \Sigma$, yields $F(\tilde{\Sigma})$.]

Let us apply this method to pseudo-complemented semilattices (with zero) Letting Σ be (S1), (S2), (S3), (S4'), (S5') we have $n(\tilde{\Sigma})=2$. As every meet semilattice S with zero can be embedded in the distributive lattice with zero of non-empty lower segments of S (a lower segment of S is a subset L such that $x \in S$, $y \in L$ imply $x \land y \in L$) we can apply the prime ideal theorem of Stone-Birkhoff (see [9]) to obtain, for any given $a, b \in S$ with $a \neq b$, a homomorphism of S onto the two-element meet semilattice with zero. This is easily checked to preserve the Skolem operation * of (S4'), (S5'). Hence the quasi-variety defined by Σ is generated by a two-element algebra A_0 . But then $F(\widetilde{\Sigma})$ must be a subalgebra of A_0^4 , so from this point it is routine to find $F(\widetilde{\Sigma})$ and verify that all of its quotients satisfy Σ .

One aspect of the previous paragraph does not appear to be constructive, namely knowing to use the Stone-Birkhoff result to show that $F(\tilde{\Sigma})$ is finite. The next result shows that one must resort to special methods to show that a given $F(\tilde{\Sigma})$ is finite.

Theorem 7. There is no algorithm by which one could determine from a finite set of quasi-identities Σ whether or not $F(\tilde{\Sigma})$ is finite.

Proof. Let Π be as previously defined and let Σ be the quasivariety defined by $\Pi \cup \{a=b \rightarrow x=y\}$, where we assume the language of Σ has an additional binary operation + (which does not appear in Σ). Then $F(\widetilde{\Sigma})$ is finite iff $\Pi \vdash a=b$, and this is undecidable.

§ 3. Homomorphism-Preserving Reducts of Varieties

Let us look at two examples of strict Horn classes where Skolemizing immediately yields a variety. **RCDL** is the class of *relatively complemented distributive lattices* (L, \vee, \wedge) . **RCDL** is axiomatized by the usual equations Σ_D for distributive lattices plus the strict Horn sentence

$$\forall x \forall y \forall z \exists w [p(x, y, z) \lor w = x \lor z \& p(x, y, z) \land w = x \land z]$$

where $p(x, y, z) = (y \lor (x \land z)) \land (x \lor z)$. (This sentence says that, for L a distributive lattice and elements $a, b, c \in L$, the element b projected into the interval $[a \land c, a \lor c]$ has a relative complement in the interval.) Using a new ternary operation symbol t we can Skolemize this sentence to obtain the variety Σ^{**} defined by Σ_D plus the equations $p(x, y, z) \lor t(x, y, z) = x \lor z$, $p(x, y, z) \land t(x, y, z) = x \land z$. (A closely related system is given in Balbes and Dwinger [1]; the one above is referred to in Burris and Werner [4].) The second example is the class CBR of commutative

bi-regular rings with unity $(R, +, \cdot, -, 0, 1)$ axiomatized by the usual commutative ring equations Σ_{CR} plus the strict Horn sentence $\forall x \exists y [y^2 = y \& x = xy \& x(1-y) = 0]$ (which says that the principal ideal generated by x is also generated by an idempotent element y). Skolemizing we obtain a variety $\mathbb{C}\mathbf{B}\mathbf{R}^{**}$ of algebras $(R, +, \cdot, -, 0, 1, ')$ axiomatized by Σ_{CR} plus $(x')^2 = x'$, x = xx', and x(1-x') = 0.

In both of these examples the variety created by Skolemizing the strict Horn sentence has the same homomorphisms as the original class. Before stating a general theorem which will prove this assertion let us look at a closely related example where Skolemizing destroys some of the homomorphisms. Let Σ_{BL} be a set of equations defining bounded lattices $(L, \vee, \wedge, 0, 1)$, and let Σ be Σ_{BL} plus the sentence $\forall x \exists y (x \land y = 0 \& x \lor y = 1)$. Thus Σ axiomatizes the (strict Horn) class of complemented bounded lattices CBL. Suppose CBL is a reduct of a variety V (not necessarily the obvious one obtained by Skolemizing). Then we will show that there are algebras $A, B \in CBL$ such that for any expansions A', B' into V there will be a homomorphism $\alpha: A \rightarrow B$ such that $\alpha: A' \rightarrow B'$ is not a homomorphism. Namely let A be the four-element bounded lattice ($\{0, a, b, 1\}, \lor, \land, 0, 1$) with $a \lor b = 1$, $a \land b = 0$, and let B be the non-modular five-element bounded lattice $(\{0, a, b_1, b_2, 1\}, \lor, \land, 0, 1)$ where $b_1 < b_2$. Then $\alpha_1: A \to B$ defined by $\alpha_1(0) = 0$, $\alpha_1(1)=1$, $\alpha_1(a)=a$ and $\alpha_1(b)=b_1$ is an embedding, as well as $\alpha_2:A\to B$ defined by $\alpha_2(x) = \alpha_1(x)$ if $x \neq b$, $\alpha_2(b) = b_2$. As $\{0, a, 1\}$ is not a subuniverse of A'(note that $(\{0, a, 1\}, \lor, \land, 0, 1) \notin CBL$) it follows that there is a polynomial p(x, y, z)such that $A' \models p(0, a, 1) = b$. Now $p(\alpha_1 0, \alpha_1 a, \alpha_1 1) = p(\alpha_2 0, \alpha_2 a, \alpha_2 1)$, but $\alpha_1 b \neq \alpha_2 b$, hence either $\alpha_1: A' \to B'$ or $\alpha_2: A' \to B'$ is not a homomorphism. With this example in mind perhaps the hypotheses of the following theorem will seem rather natural. The symbol $\exists!$ denotes "there exists a unique".

Theorem 8. Let **K** be a class of algebras defined by a set Σ of positive first-order sentences in prenex form, i.e. by sentences of the form $\forall x_1 \exists y_1 ... \forall x_n \exists y_n \Phi(\vec{x}, \vec{y})$, where $\Phi(\vec{x}, \vec{y})$ is positive and quantifier-free. Let **U** be the universal class defined by the set Σ^* of universal sentences obtained by Skolemizing Σ . Then the following are equivalent:

- (i) every algebra in K is the reduct of a unique algebra in U;
- (ii) if $A, B \in K$ and $\alpha: A \rightarrow B$ is a homomorphism then $\alpha: A' \rightarrow B'$, where A', B' are expansions of A into U, is also a homomorphism;
- (iii) for each sentence $\forall x_1 \exists y_1 ... \forall x_n \exists y_n \Phi(\vec{x}, \vec{y})$ in Σ we have $\Sigma \vdash \forall x_1 \exists ! y_1 ... \\ ... \forall x_n \exists ! y_n \Phi(\vec{x}, \vec{y}).$

Proof. (ii) \Rightarrow (iii). Suppose that for some sentence $\forall x_1 \exists y_1 ... \forall x_n \exists y_n \Phi(\vec{x}, \vec{y})$ in Σ we have $\Sigma \not\vdash \forall x_1 \exists ! y_1 ... \forall x_n \exists ! y_n \Phi(\vec{x}, \vec{y})$. Then there is a model A of Σ such that $A \not\models \forall x_1 \exists ! y_1 ... \forall x_n \exists ! y_n \Phi(\vec{x}, \vec{y})$, hence there are two distinct choices \vec{f} and \vec{g} of Skolem functions of $\forall x_1 \exists y_1 ... \forall x_n \exists y_n \Phi(\vec{x}, \vec{y})$ for A. Thus $A' \models \forall \vec{x} \Phi(\vec{x}, \vec{f}(\vec{x}))$ and $A'' \models \forall \vec{x} \Phi(\vec{x}, \vec{g}(\vec{x}))$, where A' is the expansion of A by \vec{f} and A'' is the expansion of A by \vec{g} . Since $f_i \neq g_i$ for some i, choose \vec{a} from

A such that $f_i(\vec{a}) \neq g_i(\vec{a})$. Then with α the identity map on A we have $\alpha f_i(\vec{a}) \neq g_i(\alpha \vec{a})$, so $\alpha: A' \to A''$ is not a homomorphism, so (ii) fails if (iii) fails.

 $(i) \Rightarrow (iii)$. Use the A' and A" above to show (i) fails if (iii) fails.

(iii) \Rightarrow (i). If (iii) holds then the Skolem functions for each model of Σ are unique for each $A \in \mathbb{K}$, so (i) holds.

(iii) \Rightarrow (iii). Suppose $A, B \in \mathbb{K}$ and $\alpha \colon A \to B$ is a homomorphism. Let $\forall x_1 \exists y_1 \dots \forall x_n \exists y_n \Phi(\vec{x}, \vec{y}) \in \Sigma$ and let \vec{f}_A , respectively \vec{f}_B , be the unique Skolemizing functions of this sentence on A, respectively B. For $a_1, \dots, a_n \in A$, $A \models \Phi(\vec{a}, \vec{f}_A(\vec{a}))$, hence $B \models \Phi(\alpha \vec{a}, \alpha \vec{f}_A(\vec{a}))$ as positive formulas are preserved by homomorphisms. But $B \models \Phi(\alpha \vec{a}, \vec{f}_B(\alpha \vec{a}))$, so from the uniqueness properties, $\alpha \vec{f}_A(\vec{a}) = \vec{f}_B(\alpha \vec{a})$, hence α preserves the Skolem functions.

Remark. Conditions (i) and (ii) together state that the forgetful functor from U to K is an isomorphism.

Remark. In Theorem 8 the class U is a variety if the sentences in Σ are of the form $\forall x_1 \exists y_1 ... \forall x_n \exists y_n \Phi(\vec{x}, \vec{y})$ where Φ is a conjunction of atomic formulas. In this case U is defined by equations Σ^{**} .

It is easy to prove that our axiom system for RCDL has the desired uniqueness properties. Hence the only subdirectly irreducible member of RCDL** is the two-element algebra $(2, \vee, \wedge, t)$, where $2 = \{0, 1\}$, and this algebra satisfies

$$t(x, y, z) = \begin{cases} x & \text{if } x \neq y \\ z & \text{if } x = y. \end{cases}$$

This defines the remarkable ternary discriminator function which, by the theorem of Keimel and Werner (see [4]), guarantees that every algebra in $\mathbf{RCDL^{**}}$ is isomorphic to a Boolean product (see [4]) of one- and two-element algebras. Results in Burris [3] furthermore say that every algebra in $\mathbf{RCDL^{**}}$ is isomorphic to the algebra of all continuous functions f from a Boolean space X to $(2, \vee, \wedge, t)$ such that for some fixed pair of elements $x_i \in X$, $f(x_i) = i$, i = 0, 1. (This gives Feinstein's [7] characterization of members of \mathbf{RCDL} as the sublattices of Boolean lattices obtained by intersecting one maximal ideal with one maximal filter.)

Likewise we can apply Theorem 8 to the axioms for CBR to show that the reducts of subdirectly irreducible members of CBR** are precisely the fields. Hence for R' a subdirectly irreducible member of CBR** the function $(x-y)' \cdot x + +[1-(x-y)'] \cdot z$ is the ternary discriminator on R', so applying the Bulman-Fleming and Werner (see [4]) results on discriminator varieties it follows that every commutative biregular ring is a Boolean product of fields.

Acknowledgements. We take this opportunity to thank Professor Bulman-Fleming for interesting discussions on the topic of this paper, and the referee for improving the formulation of some of the results and the sharpened version of Theorem 8 presented here.

References

- [1] R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press, 1975.
- [2] R. Balbes and A. Horn, Stone lattices, Duke J. Math. 38 (1970), 537-545.
- [3] S. Burris, Sub-Boolean power representations in quasiprimal generated varieties (in preparation).
- [4] S. Burris and H. Werner, Sheaf constructions and their elementary properties, Trans. Amer. Math. Soc. 248 (1979), 269-309.
- [5] C. C. CHANG and H. J. KEISLER, Model Theory, North-Holland, 1973.
- [6] T. Evans, The spectrum of a variety, Z. Math. Logik Grundlagen Math. 13 (1967), 213-218.
- [7] D. C. Feinstein, A representation of relatively complemented distributive lattices, Colloq. Math. 32 (1975), 153-158.
- [8] G. Grätzer, On spectra of universal classes, Proc. Amer. Math. Soc. 18 (1967), 729-735.
- [9] G. GRÄTZER, Universal Algebra, van Nostrand, 1968.
- [10] S. R. KOGALOVSKIĬ, The multiplicative semigroup of rings, Dokl. Akad. Nauk SSSR 140 (1961), 1005–1007 (in Russian).
- [11] A. I. MAL'CEV, Algebraic systems, Springer, 1973.
- [12] R. McKenzie, On spectra, and the negative solution of the decision problem for identities having a finite nontrivial model, J. Symbolic Logic 40 (1975), 186-196.
- [13] G. McNulty, Undecidable properties of finite sets of equations, J. Symbolic Logic 41 (1976), 589-604.
- [14] G. McNulty, Fragments of first-order logic, I: Universal Horn Logic, J. Symbolic Logic 42 (1977), 221-237.
- [15] A. Ju. Ol'šanskii, Varieties of finitely approximable groups, *Izv. Akad. Nauk SSSR Ser. Mat.* 33 (1969), 915-927 (in Russian).
- [16] H. P. Sankappanavar, A study of congruence lattices of pseudo-complemented semilattices, Ph. D. Thesis, University of Waterloo, 1974.
- [17] S. Shelah, Every two elementary equivalent models have isomorphic ultrapowers, Israel J. Math. 10 (1971), 224-233.

Department of Pure Mathematics, Faculty of Mathematics, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 Received November 16, 1977; revised April 7, 1978