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There are a number of interesting classes of algebras which, although not
themselves varieties, can be advantageously studied as reducts of varieties. In §1
we look at strict Horn classes and reducts of varieties, with special attention to the
possibility of finding constructive methods of answering some fundamental questions.
This leads to § 2 where we examine when a quasi-variety is actually a variety. Finally
in § 3 certain strict Horn classes are shown to be homomorphism-preserving reducts
of varieties. The examples presented in this paper are not new, but the approach
via Skolemization, etc. offers a unifying perspective.

§ 1. Strict Horn Classes

Aclass K of algebras is a reduct of a class K’ of algebras (or K’ is an expansion
of K)if K is obtained from K’ by forgetting some of the fundamental operations.
For example Abelian groups form a reduct of the class of rings. Unfortunately
a reduct of a variety may not even be an elementary class (Kogalovskii [10]). Indeed,
the situation is even worse, as we shall see in Theorem 2. The negative results on
algorithms (such as this one) are based on Lemma 1. If IT is a finite set of semi-
group relations with an unsolvable word problem and - is the semigroup operation
let IT,, be the set of equations ITU {x-(y-z)=(x-y)-z, x®a=x, x®b=y®b} (in
the language with two binary operations - and @, and with nullary operations
consisting of the generators of the semigroup belonging to IT), where a and b are
words in the original semigroup.

Lemma 1.%) There is no algorithm to determine if Il,}-x=y.

1) An excellent survey of such decidability questions is given in McNulty [13].
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Proof. 1t is not difficult to see that I, —x=y iff T-a=5b, and the latter is
an undecidable question. ' 0

Theorem 2. There is no algorithm by which one could determine from any finite
set of equations X and any reduct of the variety defined by X whether or not this
reduct is an elementary class.

Proof. Let Xy be a finite set of equations defining rings, and form X=11,UZ,
(we assume that the fundamental operations symbols of I1,, and Xy are distinct).
Let K be the reduct of the variety defined by Z obtained by dropping all the ring
operations except multiplication. If ZXp«x=py then any infinite multiplication
semigroup which is a reduct of a ring will also be a reduct of an algebra in K as
every ring R can be arbitrarily juxtaposed on any model of II,, of the same car-
dinality to obtain a model of X (because the operation symbols in I1,, and X,
are distinct). However, the class of multiplicative semigroups which are reducts
of rings do not form an elementary class (see [10]), so there is an infinite semigroup
S which is not a reduct of any ring, but it is elementarily equivalent to a reduct
of a ring. By Shelah [17] there is an index set [/ and ultrafilter % such that S'/%
is a reduct of a ring (note that the multiplicative semigroup reducts of rings are
closed under ultrapowers). Choose a model A of II,, of the same cardinality as S,
and juxtapose S arbitrarily on A to form B. Then BY/#cK. Now B¢K, hence
K cannot be an elementary class. But then clearly K will be an elementary class
iff - x=y, and the latter obviously holds iff IT,,x=y, and by Lemma 1 there
is no algorithm for this last question. O

If, nonetheless, we restrict our attention to those reducts of varieties which do
form elementary classes we have a rather satisfying result. First recall (see [5])
that a strict Horn sentence (in prenex form) looks like

01% ... quu{‘if' [(‘;& Pij = 9qij)) =~ p; = ‘?j]},

‘where each Q; iseither V or 3. If there is exactly one j-index and all the quanti-
fiers are universal it is called a quasi-identity (see [11]).

Theorem 3. For an elementary class K of algebras the following are equivalent :®)
(a) K is the reduct of some variety,

(b) K can be axiomatized by strict Horn sentences,

(c) K is closed under reduced products (including the empty product).

Proof. The equivalence of (b) and (c) is exercise 6.2.8 of [5]. If (a) holds then
clearly (¢) holds (we do not need the fact that K is elementary for this implication).
So suppose (b) holds, and let X be a set of strict Horn sentences axiomatizing K.

%) Our proof of (b)=>(a) is essentially that of T. Evans [6]. See McKenzie’s fascinating paper
[12] for techniques based on the discriminator function.

162



By Skolemizing the sentences in X we obtain X', a set of strict universal Horn
sentences such that K is a reduct of the models of X*. Without loss of generality
we can replace X* by a set Z** of quasi-identities. Expand the language of X**
by one new (2n+1)-ary function fi(xy, yi, ..., X;, ¥, u) for each n=1, and let
Z*** be the set of identities

Si(z1s 215 2oy Zoy ooy Zys S ) =1 (M= 1)
plus all identities
Jo(Prs Gas oo Pus Gus P) = Lu(Pas s - Pus G5 9)

where pi=q,&...&p,=q,~p=q is in X*". Now one only needs to verify that
reducts of algebras in X*** obtained by dropping the f’s actually satisfy Z**
(which is rather evident), and that any model of X** can be expanded to a model
of X*** (say by defining f,(a,, @, ..., 4, @,, b)=>b, and otherwise f,(a,...)=a).
Thus K isa reduct of the variety defined by Z***. (If X were finite then we would
only requirc finitely many f,’s, hence Z*** would also be finite.) O

An easy application of this general result is Gritzer’s characterization of the
spectra of varieties®). The spectrum of a variety is the set of cardinalities of the finite
algebras in the variety.

Corollary 4 (Gritzer [8]). Let S be a subset of the natural numbers. Then
S is the spectrum of a variety iff 1€ S and S is closed under multiplication.

Proof. (<) Let K be the class of sets which are either infinite or whose car-
dinality is in S. Then K is an elementary class closed under reduced products,
hence K is a reduct of some variety V. But then § is the spectrum of V. 0O

§ 2. Quasi-Varieties

A quasi-variety (see [11]) is an elementary class which can be axiomatized by
quasi-identities (see § 1). If we start with a set X of strict Horn sentences and
Skolemize we (essentially) obtain a set Z** of quasi-identities (this is of course
the notation used in the proof of Theorem 3). In many cases X** already defines
a variety — if so this gives a more natural variety of which the class defined by X
is a reduct. A non-trivial example of this is the class K of pseudo-complemented
semilattices with zero (S, A, 0) axiomatized by

(S1) xA(yAz)=(xAy)Az

(82) xAy=yAx

(83) xAx=x

(S4) vVx3yVz[xAy=0 & (xAz=0—+zAy = z)].

3) The usual proof is based on the study of primal clusters.
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Skolemizing we obtain (S1)-(S3) plus
(84) xAx*=0
(85) xAz=0—-zAx" =z,

a quasi-variety which is indeed a variety. This is not an obvious fact; it was first
pointed out in Balbes and Horn [2]. (See Sankappanavar [16] for a historical
discussion.) We now look at the problem of determining when a quasi-variety is
a variety. (One of the most interesting results in this direction is Ol’Sanskii’s [15]
characterization of finite groups G such that the quasi-variety generated by G is
a variety.)

Theorem 5. There is no algorithm to determine if a finite set of quasi-identities
defines a variety.®)

Proof. For II as before let X be I,U{x+y=y+x—-x=y}. If Zirx=y
let A be a model of IT1,, which is not simple, and choose distinct elements a,, a;
of A such that for some congruence 0, [g))y=[a], and A/0 has at least two
elements. Let = well-order A4 and define the operation + on A by x+y=a,
if x=y, x+y=a, if y<x. The resulting algebra A" is a model of X, and 0 is
a congruence of A”. As A’/0=x+y=y+x but A’[0=x=y itfollows that Z does
not define a variety. Consequently we see that X will define a variety iff Zx=y,
hence iff M, x=y, and again by Lemma 1 this is undecidable. O

In spite of Theorem 5 we can still find some useful positive results. From basic
facts in universal algebra (see [9]) we know that any quasi-variety Q contains the
free algebras of the variety generated by Q. If Z is a finite set of quasi-identities
let £ be the subset of quasi-identities which are not already identities, and let
F(Z) be the free algebra in the quasi-variety defined by X which is freely generated
by n(Z) elements, n(Z) being the maximum number of variables in a quasi-
identity from Z.

Theorem 6. There is an algorithm from which one can determine from any finite
set X of quasi-identities for which F(£) is a finite algebra if X determines a variety.
This algoritm does not give an erroneous result when starting from a X such that
F(Z) is infinite, but maybe it does not terminate.

Proof. A universal sentence @ with n quantifiers will hold in a variety V
iff it holds in the n-generated algebras of the variety. Thus to see if X defines
a variety it suffices to construct F(£) and see if all the homomorphic images of
F(Z) satisfy . If so then X defines a variety, otherwise not. [We should point
out that if we know F(Z) is finite, then, without even being given a finite bound
on the size of F(Z), we can still construct F(E) by enumerating the equational
consequences p(X;, ..., X,)=q(xy, ..., x,) of Z, where n=n(%), and checking

%) Actually a deeper result is proved in McNulty [14] for universal Horn theories.
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down the list until we find a collection of polynomials p,, ..., p, containing x,, ..., X,
and such that, modulo Z, it is closed under the fundamental operations. This will
give a finite algebra A4 which, after factoring by the smallest congruence 6 such
that A4/0k=Z, yields F(£). =]

Let us apply this method to pseudo-complemented semilattices (with zero)’
Letting X be (S1), (S2), (S3), (S4), (S5’) we have n(Z)=2. As every meet semilattice
S with zero can be embedded in the distributive lattice with zero of non-empty
lower segments of S (a lower segment of S is a subset L such that x€S, y€L
imply xAy€L) we can apply the prime ideal theorem of Stone-Birkhoff (see [9])
to obtain, for any given a, b€ S with a>b, a homomorphism of S onto the
two-element meet semilattice with zero. This is easily checked to preserve the Skolem
operation * of (S4°), (S5'). Hence the quasi-variety defined by X is generated by
a two-element algebra A,. But then F(Z) must be a subalgebra of Ay, so from
this point it is routine to find F(£) and verify that all of its quotients satisfy Z.

One aspect of the previous paragraph does not appear to be constructive, namely
knowing to use the Stone-Birkhoff result to show that F(Z) is finite. The next
result shows that one must resort to special methods to show that a given F(I) is
finite.

Theorem 7. There is no algorithm by which one could determine from a finite
set of quasi-identities X whether or not F(Z) is finite.

Proof. Let II be as previously defined and let £ be the quasivariety defined
by MU{a=b-~x=y}, where we assume the language of X has an additional
binary operation + (which does not appear in Z). Then F(Z) is finitc iff [T—a=b,
and this is undecidable.

§ 3. Homomorphism-Preserving Reducts of Varieties

Let us look at two examples of strict Horn classes where Skolemizing immediately
yields a variety. RCDL is the class of relatively complemented distributive lattices
(L, V, A). RCDL is axiomatized by the usual equations X, for distributive lat-
tices plus the strict Horn sentence

VxVyVzawlplx,y, 2)Vw = xVz & p(x,y, 2)Aw = xAz]

where p(x, y, z)=(yV (xAz))A(xVz). (This sentence says that, for L a distributive
lattice and elements a, b, c€ L, the element b projected into the interval [aAc, aV ]
has a relative complement in the interval.) Using a new ternary operation symbol
t we can Skolemize this sentence to obtain the variety X** defined by X, plus
the equations p(x, y, z)Vt(x, y, z2)=xVz, p(x,y, 2)At(x, y,z)=xAz. (A closely
related system is given in Balbes and Dwinger [1]; the one above is referred to in
Burris and Werner [4].) The second example is the class CBR of commutative
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bi-regular rings with unity (R, +, -, —, 0, 1) axiomatized by the usual commutative
ring equations Zcg plus the strict Horn sentence Vx 3y [)*=y&x=xy&x (1 —y)=0]
(which says that the principal ideal generated by x is also generated by an idem-
potent element y). Skolemizing we obtain a variety CBR** of algebras (R, +, -,
—,0,1,”) axiomatized by Zcg plus (x)*=x", x=xx", and x(1—x")=0.

In both of these examples the variety created by Skolemizing the strict Horn
sentence has the same homomorphisms as the original class. Before stating a general
theorem which will prove this assertion let us look at a closely related cxample
where Skolemizing destroys some of the homomorphisms. Let X, be a set of
equations defining bounded lattices (L, V, A,0,1), and let X be Xy plus the
sentence Vx3y(xAy=0&xVy=1). Thus X axiomatizes the (strict Horn) class
of complemented bounded lattices CBL. Suppose CBL is a reduct of a variety V
(not necessarily the obvious one obtained by Skolemizing). Then we will show that
there arc algebras A, BECBL such that for any expansions A’, B” into V there
will be a homomorphism «: A—~B such that «: A"~ B’ is not a homomorphism.
Namely let A4 be the four-clement bounded lattice ({0,a, 5,1}, V, A, 0, 1) with
avb=1, ahb=0, and let B be the non-modular five-element bounded lattice
({0. a, by, by, 1}, V, A, 0, 1) where b,<b,. Then o,: A~B defined by «,(0)=0,
a()=1, ay(@)=a and oy(b)=b, is an embedding, as well as o,: 4A~B defined
by ax(x)=oy(x) if x#b, a(b)=b,. As {0,a, 1} is not a subuniverse of A’
(note that ({0, @, 1}, V, A, 0, 1)§ CBL) it follows that there is a polynomial p(x, y,z)
such that A"=p(0, a, 1)=b. Now p(2,0, a, ;1) =p (a0, aza, a,1), but oy b# oy b,
hence cither o,: A"—~B" or ay: A’—~ B’ is not 2 homomorphism. With this example
in mind perhaps the hypotheses of the following theorem will seem rather natural.
The symbol 3! denotes “there exists a unique™.

Theorem 8. Let K be a class of algebras defined by a set X of positive first-
order sentences in prenex form, i.e. by sentences of the form ¥ x;3y,...¥x,3y,P(X, y),
where ®(%, ¥) is positive and quantifier-free. Let U be the universal class defined
by the set X* of universal sentences obtained by Skolemizing X. Then the following
are equivalent:

(i) every algebra in K is the reduct of a unique algebra in U;

(ii) if A, B€EK and o: A—~B is a homomorphisni then o: A~ B, where A, B’

are expansions of A into U, is also a homomorphism;

(iii) for each sentence ¥ xy3y,...Vx,3y,®(X, §) in X we have X+ Y x;3!y,...

LY x, 3y d(R, ).

Proof. (ii)=>(iii). Suppose that for some sentence Vx;3y;...¥x,3¥,P(X, ¥)
in X we have Zp ¥Vx;3'y...¥x,3!y,®(%, ). Then there is a model A of X
such that Ak Vx,3!y...¥x,3!y,®(%, y), hence there are two distinct choices
f and g of Skolem functions of Vx,3y,...¥x,30,®&, ) for A. Thus A'=
= VIO(F, f(R) and A”=VEP(X, g(X)), where A" is the expansion of A by
f and A” is the expansion of 4 by g. Since f;#g; for some i, choose @ from
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A such that f;(d)#g;(d). Then with o the identity map on A4 we have af;(d)#=
#g;(ad), so a: A’~A” is not a homomorphism, so (ii) fails if (iii) fails.

(i)=(iii). Use the A" and A” above to show (i) fails if (iii) fails.

(iii)=(i). If (iii) holds then the Skolem functions for each model of X are
unique for each A€K, so (i) holds.

(iii)=>(ii). Suppose A, B€K and a«: A—~B is a homomorphism. Let Vx;3y,...
...¥x,3y,®(%, J)EX and let f,, respectively fz, be the unique Skolemizing
functions of this sentence on A, respectively B. For ay, ..., a,64, A= (D(Ez',fA(ﬁ)],
hence Bl= ®(od, af,(@)) as positive formulas are preserved by homomorphisms.
But Bi= ®(ad, fg(ed)), so from the uniqueness propertles af ((@)=fy(ad), hence
o preserves the Skolem functions. O

Remark. Conditions (i) and (ii) together state that the forgetful functor from
U to K is an isomorphism.

Remark. In Theorem 8 the class U is a variety if the sentences in X are of the
form Vx;3y,...Vx,3,P(%, §) where @ is a conjunction of atomic formulas. In this
case U is defined by equations Z**.

It is easy to prove that our axiom system for RCDL has the desired uniqueness
properties. Hence the only subdirectly irreducible member of RCDL** is the two-
element algebra (2, V, A, ), where 2={0, 1}, and this algebra satisfies

x if x#y
r(x,y,z)={

z if x=y.
This defines the remarkable ternary discriminator function which, by the theorem
of Keimel and Werner (see [4]), guarantees that every algebra in RCDL** is iso-
morphic to a Boolean product (see [4]) of one- and two-element algebras. Results
in Burris [3] furthermore say that every algebra in RCDL** is isomorphic to the
algebra of all continuous functions f from a Boolean space X to (2, V, A, )
such that for some fixed pair of elements x;€X, f(x;)=i, i=0, 1. (This gives Fein-
stein’s [7] characterization of members of RCDL as the sublattices of Boolean
lattices obtained by intersecting one maximal ideal with one maximal filter.)
Likewise we can apply Theorem 8 to the axioms for CBR to show that the
reducts of subdirectly irreducible members of CBR** are precisely the fields. Hence
for R’ a subdirectly irreducible member of CBR** the function (x—y) «x+
+[1—=(x—p)]-z is the ternary discriminator on R’, so applying the Bulman-
Fleming and Werner (see [4]) results on discriminator varieties it follows that every
commutative biregular ring is a Boolean product of fields.
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