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MODEL COMPANIONS FOR FINITELY GENERATED
UNIVERSAL HORN CLASSES

STANLEY BURRIS!

Abstract. In an earlier paper we proved that a universal Horn class generated by finitely
many finite structures has a model companion. If the language has only finitely many
fundamental operations then the theory of the model companion admits a primitive recursive
elimination of quantifiers and is primitive recursive. The theory of the model companion is X,-
categorical iff it is complete iff the universal Horn class has the joint embedding property iff the
universal Horn class is generated by a single finite structure. In the last section we look at
structure theorems for the model companions of universal Horn classes generated by
functionally complete algebras, in particular for the cases of rings and groups.

In a recent paper [6] Wheeler proved that the class of N-colorable graphs is the
universal Horn class generated by a single finite graph. Then he proceeds to show
that the class of N-colorable graphs has a model companion which is N -categorical,
has a primitive recursive elimination of quantifiers, and is decidable. The existence
and X,-categoricity of the model companion can be easily seen from general results
in Burris and Werner [2]. We will continue our application of sheaf-theoretic
constructions in [2] to give a general setting to the other results of Wheeler on
model companions mentioned above.

Our notation will follow that of [2]. We will restate the pertinent definitions and
preliminary results here. If A4 is a subdirect product of structures A;,i € I, and ®(u1)
is a first-order formula, and f is a sequence of elements from A, then [&(f)] =
{ieI|A;E @(f,(i), ...)}. If A is a class of structures then 4 € I'y(#") means that
there is a Boolean space X (4) without isolated points and structures A, € X~ for
x € X(A) such that

(1) A is a subdirect product of the A4,

2°) [®(f)] is a clopen subset of X(A) for all first-order formulas &(it) and
parameters f from A, and
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(3)for f,g € Aand N a clopen subset of X (A4) the functionh = fly U g[x_yisin
A.

In addition to the class operator I' we will need I (closure under isomorphism), S
(closure under substructure), and P (closure under direct product).

The logical symbols we need are V,3,71, &, v, —», <> and V, the latter referring to
a (possibly) infinite disjunction. The universal Horn class generated by a finite set %~
of finite structures is ISP(2¢) (this is the smallest class containing 2~ which can be
axiomatized by universal Horn sentences). ‘

A theory T has a model companion T* if (i) T* is model-complete and (ii) every
model of T can be embedded in a model of T*, and vice-versa. If T* exists (given T')
then it is unique. We will occasionally refer to the model companion as the models of
T* (this should cause no confusion), and speak of the model companion of an
elementary class. The model companion of a universal Horn class is always
contained in the class.

§1. Finitely generated universal Horn classes. A class ¢’ is a finitely generated
universal Horn class if #~' = ISP (") for some finite collection of finite algebras .
The first result is proved in §8 of [2].

THEOREM 1.1. Every finitely generated universal Horn class has a model
companion.

A class o of algebras has the joint embedding property if given A, B € " there is
a C € A such that 4 and B can be embedded in C.

THEOREM 1.2. If X is a finite collection of finite structures and the language is finite
then the following are equivalent for the model companion T* of the theory of ISP(X"):

(i) T* is Ny-categorical,

(i) T* is complete,

(iii) ISP(2X) has the joint embedding property,

(iv) there is a single finite structure A such that ISP(X") = ISP(A).

PROOF. (i) = (ii) is clear, and (ii) = (iii) can be found in Robinson [4]. Now
(iii) = (iv) as ISP(x¢") is locally finite, hence from (iii) there is a finite 4 € ISP(X")
such that each member of # can be embedded in 4. But then ISP(¢") = ISP(A).
Finally (iv) = (i) is stated in §8 of [2]. O

For the remainder of this section we will need to go into some of the details of the
results from §8 of [2] which were quoted above. We assume that we are working
within a given finite language L (possibly with both relation and function symbols).
E, denotes the collection of existential formulas 3u®(#, v,,...,v,), where & is open.
P, denotes the primitive formulas in E,, i.e. those for which @ is a conjunction of
atomic and negated atomic formulas. A basic atomic formula is one of the form
r(uy, ..., u,) or f(uy, ..., u,) = u,,,, where the u;’s are variables, r is a fundamental
relation, and fis a fundamental operation. Let P¥ be the conjunctions of members of
P, whose matrics are conjunctions of basic atomic formulas and/or negations of the
same. For a class & of structures in our language we will call a subset R, of P} a set
of representatives of P, modulo # if every member of P, is equivalent to some
member of R, modulo /.

Also for the remainder of this section we will let /¢ be a fixed finite set of finite
structures in the given language. The next result is Lemma 8.2 of [2].



70 STANLEY BURRIS

LEMMA 1.3 (MACINTYRE). If A € T{(X) and ®() € P,, say D) is
Ju[ Do, D) & &, < (W, v)], where ®,(u, v) is a conjunction of atomic formulas,
and each a; is atomic, then, for f from A,

AE &F)
iff
(i) [Fudo(@, )] = X(4)
and
(ii) [Fu(Bo, f) & i, f))] # D, 1<i<k

REMARK. In the above, if there is no positive part @, of @ then omit (i), and if there
is no negative part omit (ii).

An immediate consequence of this is the following.

COROLLARY 1.4. Let ®(v) be as in the previous lemma. Then

1<i<k

ryx) = &@)— {[3?4%(?4,8)] & & [Hﬁ¢o(ﬁ,5)&—lai(ﬁ,5)]}.

LEMMA 1.5. There is a primitive recursive procedure to find a finite set R, of
representatives of P,modulo I'§(X"), and there is a primitive recursive procedure, given
®eP,to findad €R,suchthat T'{(H )= PP

PRrROOF. For @(v) € P, let ®(v) be written in the form

1<i<k

Hﬁ[éo(ﬁ, )& & —oy(u, 5):|

as in the statement of Lemma 1.3. (If &(v) has no positive part, change the matrix
by introducing v, = v,; and if there is no negative part we have just 3u®, (i, d).) As
there is a primitive recursive method to transform @ into an equivalent formula
in P} using the schemes

p=qeIz[p=z&q=1z],

p#qerdzZdw[p=z&q=w&z #w],

1<i<n

f(pla~-',pn) = DHBZI...HZ"[f(E) =v& & pi = Zi:|’

r(Py,...,pa) e 3z, ...Elz,,[r(?)& & pi= z,-:|,

1<i<n

we can assume without loss of generality that @ € P}¥. By Corollary 1.4,

(X)) @(a)H{[aacpo(a,a)]& & [3a(¢0(a,a)&—|a,.(a,a))]}.

1<i<k

We will show that each of the k + 1 primitive formulas on the right-hand side of the
bi-implication is equivalent modulo I'§(¢') to a formula in P} with a primitive
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recursive bound u(n) on the number of existential quantifiers and on the number of
basic atomic formulas appearing in the matrix.

Let M be the maximal size of a structure in 2", N the number of structures in /¢, r
the maximum number of variables in a basic atomic formula, and K the number of
fundamental operations and relations in the language.

Suppose x(v) = Ju, ... u,[&, <iss Bi(u,v)] is in P¥* and each B; is basic atomic.
Then, for each Be # and each b from B such that B 3u[&1<,<sﬁ,(u b)] let
%4:{uy,...,u,} —> B be an assignment such that B &, ., fi(45(u),b). The
equ1valence relation ¢ on {uy,...,u,} given by (\{Ker(4;)|beBe X} has
at most m' = MV "M" equivalence classes. Thus, by Lemma 1.3, Eiu[&1 <i<s Biu, 0)]
is equivalent modulo I'§(¢) to

I:&/? &&u—u:l

1<i<s (ujuj)ee

and hence to a member of P} with at most m’ existential quantifiers, say (). But
then, by cancelling out repeats of basic atomic formulas in the matrix of y'(v) we can
assume the matrix of y'(v) hasat mosts’ = K - (m’ + n)" occurrences of basic atomic
formulas.

Next suppose x(0) = Ju, ... Ju, [(&, <; <, Bi(li, v)) & a(u, b)]is in P¥ with each B;
and o being basic atomic. Then again for each B € # and b from B such that B=
Ju[&, <, Bi(ii, b)] choose J; as above, and if B Jul (& <i<s i, b))& T1x(it, b)]
choose w;: {u,...,u,} — B such that

(1 & pti b))&w(uf,mm

In this case let  be the equivalence relation on {uj,...,u,,} defined by
{Ker(4;)|be Be &} n(\{Ker(uz)|be Be A},

and note that the number of equivalence classes of § is no more than m” = m?V"M",
Again by Lemma 1.3, 3u[ (&, <; <, Bi(4, v)) & T1a(ih, v)] is equivalent modulo I'§(.¢")
to

3&[( &. ﬁ,(ft,ﬁ))&—!oc(ﬁ,ﬁ)& & u,-=u]],

1<i<s (uiuj)ed

and hence to a member y” of P} with at most m” existential quantifiers and
(cancelling out repeats in the matrix) with at most s” = K - [m” + n]" basic atomic
formulas in the matrix, and —1a (with suitable variables) as the only negated basic
atomic formula.

There is clearly a primitive recursive procedure to list, given n, all the finitely many
formulas of the form y'(v) and " (v) described above, where the quantified variables
are restricted to uy,...,u,,; and there is a primitive recursive bound v(n) on the
number of such formulas. Let R, be the set of y'(v) as well as all formulas of the form
x'(0)& &, <;<.x! () where t < v(n). Then, returning to our original formula ®(7) we
know 3ud, (i, v) and each Ju[P,(u,v) & 1a,(4, )] is equivalent modulo I'§(H") to
some y'(¥) respectively to some " (v) from R,, so ®(v) is equivalent modulo I'§(X")
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to some member of R, (again by Lemma 1.3), and the reduction to a member of R,, is
primitive recursive. O

Given @ € P, let ®* be the finite disjunction \\/{¥ € R, |T'{(#) = ¥ -1 &}.

LEMMA 1.6. For @ € P, there is a primitive recursive procedure to find ®* from .

PROOF. Let T;, be the theory of atomless Boolean algebras. Then there is primitive
recursive translation of sentences y in our given language to sentences y* in the
language of Boolean algebras (based on Comer’s Feferman-Vaught theorem for I'§)
such that I'y(A) = x iff TyE= x* (see [2], Lemma 4.4). As there is a well-known
primitive recursive decision procedure for T, (using elimination of quantifiers),
it follows that we have a primitive recursive procedure to determine if I'§(¢") =
Y >, for Y eR,. O

Let T"” be the universal Horn part of the theory of ISP(;¢"), and let .# be the
model companion of ISP(¢").

THEOREM 1.7. A is primitive recursively axiomatized by T" U{® v ®*|d e P,,
n< w}.

PROOF. Since a universal Horn sentence y holds in ISP(¢') iff it holds in ¢, it
is clear that T is primitive recursive, and then from Lemma 1.6 the entire proposed
set of axioms is primitive recursive. Now I'§(X) = &* o \[/{¥ e P,|T§(X) =
¥ — 1@}, so by §8 of [2] the above indeed axiomatizes /. O

LEMMA 1.8. For ® e P,, #/ E &* > .

Proor. Clearly # E &* > 1@, and as A4 = &* v &, it follows that 4 =
P* o>,

THEOREM 1.9. The theory of M admits a primitive recursive elimination of
(existential) quantifiers.

PROOF. Just combine Lemmas 1.6 and 1.8 to obtain a primitive recursive
transition from existential to universal formulas, and vice-versa. O

THEOREM 1.10. The theory of M is primitive recursive, hence decidable.

PrOOF. Given a sentence @, first transform it into an equivalent universal sentence
@’ (modulo .#) by Theorem 1.9. Now # = &' iff ISP(4") = &', and the latter holds
iff P(¢")= @'. The techniques of Feferman and Vaught (see §4 of [2]) give a
primitive recursive method of deciding if P(X4") = &'. O

§2. Model companions for universal Horn class generated by functionally
complete algebras. Although we have a primitive recursive axiomatization of the
model companion for a finitely generated universal Horn class, there are no general
structure theorems known for this model companion. In this section we will look at
the situation when the universal Horn class is generated by a single functionally
complete algebra. (The general background for this section can be found in Chapter
IV of [1].) A finite algebra A is said to be functionally complete if for every map
A:A" > A,0 < n < w, there exist a term p(u,v) and parameters a from A4 such that
AE A(u) = p(u,a), i.e., if every such 1 is representable by a term with parameters.
Throughout this section we assume our functionally complete algebras to have a
universe of at least two elements, to avoid an obviously trivial case.

A principal congruence formula in a given language is a formula n(u, v, v, v') of the
form

E!fv[u =pi(o,(1), W) &u' = p"(0,(2,W) & & pi(o:(2, w) = p,~+1(ai+1(1),ﬁ)):|,

1<i<n-—1
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where the p;’s are terms and {g,(1),0,(2)} = {v,v'} for 1 <i<n. Let IT denote the
collection of all principal congruence formulas in the given language. For A an
algebra and a, b € A let 6,(a, b) be the principal congruence of 4 generated by (a, b).
A well-known result of Mal’cev (see [1], p. 221) says (c,d) € ,(a,b) iff AE
V{n(c,d,a,b)|m e IT}.

LEMMA 2.1. If A is a functionally complete algebra in a congruence permutatable
variety, then, for some n € I, (c,d) € 0,(a, b) iff A= n(c,d,a,b).

PROOF. Let m be the number of elementsin A,and in B = A™ choose f, g, h, k such
that {(c,d,a,b) € A*|a = b—c =d} = {(f(i),9(), h(i), k(i))|i < m*}. Then (see [5])
(f,9) € Og(h, k), so let = € IT be such that B = n(f, g, h, k). O

The ternary discriminator t on a set A is the function defined by

u ifu#o,
Hw,v,w) = w ifu=v

(This function played a major role in [2].)

LEMMA 2.2. If A is a functionally complete algebra in a congruence permutable
variety, then there is a positive formula t(vy,v,,v3,04) € Py such that AF
t(ay,a,,a3,a,) iff t(ay,a,,as) = a,, t being the discriminator function.

PROOF. Let t*(v,,v,,v;,2) be a term with parameters which represents t. If the
universe of A is {ay,...,a,} let 4 be the collection of formulas

{fuip...ouy) =u flai,....,a;) =a;, .}

i+ 1

where f is any fundamental operation on 4. Now let 7(vy,v,,v3,v,) be

3?[41:(?)& & n;,ry,ry,r)&t*v,,0,,05,5) = v4:|,
1<i<4
where 7 is as described in Lemma 2.1, and 5 is a sequence of variables selected from
the r’s which correspond to the e in the definition of t* above. If 1(a,,a,,a;,ad,)
holds in A, then choose a sequence b from A to witness 7. As A is simple and 4 =
A,’{(f)), either b,,...,b, are all equal or they are the universe of A. In the former case
AE n(a;,b,,b,,b,) implies @, = --- = a,; hence t(a,, a,, a;) = a,. In the latter case
we have t*(a,,a,,d,,c) = a,, where ¢ is the appropriate sequence of b;’s; hence
t(@,,d,,d;) = d,, as ¢ is the image of e under an automorphism of 4 (namely the
automorphism a; — b;). Conversely, if A &= t(a,, a,,ds) = a, then the interpretation
r; — a; leads to A FE 1(a,,a,, a,, a,).

To state our main result in this section we need one more definition, namely that
of the class operator I'j. It is defined the same as I'§ except condition (2°) is replaced
by

(2% [#(f)] is a clopen subset of X(A) for all atomic formulas ®(u) and para-
meters 7from A.

THEOREM 2.3. Suppose A is a functionally complete algebra in a congruence
permutable variety and M is the model companion of ISP(A).

(a) If A has exactly no one-element subalgebra then M = 1I'§(A).

(b) If A has exactly one one-element subalgebra then

M =1{BeTy(A,)|[VxVy(x = y)] is a singleton},

A, being {A} union the one-element algebra.
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ProoFr. In view of Lemma 2.2 this is just an application of Theorem 10.7 of [2].

O
ExAMPLES. (1) A finite simple ring (in the language { +, -, —,0,1}) R is function-
ally complete (Werner [5]); hence the model companion of ISP(R) is IT'§(R).
(2) A finite nonabelian simple group G is functionally complete (Maurer-Rhodes
[3]); hence the model companion of ISP(G) is I{H € I'}(G )| [Vu¥v(u =v)] is a
singleton}.
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