EMBEDDING THE DUAL OF Π_m IN THE LATTICE OF EQUATIONAL CLASSES OF COMMUTATIVE SEMIGROUPS

STANLEY BURRIS1 AND EVELYN NELSON2

ABSTRACT. The lattice of equational classes of commutative semigroups does not satisfy any special lattice laws.

In [4] R. Schwabauer proved that the lattice \mathcal{L} of equational classes of commutative semigroups is nonmodular. In this paper we will prove a maximal extension of this result, namely, \mathcal{L} does not satisfy any special lattice laws.

The free commutative semigroup on countably many generators, $\mathfrak{F}(\omega)$, is the set of sequences $(u_n)_{n\in\mathbb{N}}$ of nonnegative integers, such that $u_n=0$ for all but finitely many $n\in\mathbb{N}$ and $\sum u_n\geq 1$, with component-wise addition. [For convenience, we write (u_n) for $(u_n)_{n\in\mathbb{N}}$.]

A commutative semigroup equation is a pair $((u_n), (v_n))$ of elements of $\mathfrak{F}(\omega)$ (see [1]). A commutative semigroup (\mathfrak{S}, \cdot) satisfies the equation $((u_n), (v_n))$ iff, for every family (a_n) of elements of \mathfrak{S} , $\Pi\{a_{n^n}^{u_n}|u_n\neq 0\}=\Pi\{a_{n^n}^{v_n}|v_n\neq 0\}$.

A set Σ of equations is closed [1, p. 170, Definition 2] iff it contains all trivial equations, is symmetric and transitive, and is closed under multiplication and substitution of terms for variables. Thus Σ is closed iff it satisfies the following conditions:

- (P1): $((u_n), (u_n)) \in \Sigma$ for all $(u_n) \in \mathfrak{F}(\omega)$.
- (P2): If $((u_n), (v_n)) \in \Sigma$ then $((v_n), (u_n)) \in \Sigma$.
- (P3): If $((u_n), (v_n)) \in \Sigma$ and $((v_n), (w_n)) \in \Sigma$ then $((u_n), (w_n)) \in \Sigma$.
- (P4): If $((u_n), (v_n)) \in \Sigma$ and $((u'_n), (v'_n)) \in \Sigma$ then $((u_n + u'_n), (v_n + v'_n)) \in \Sigma$.

(P5): If $((u_n), (v_n)) \in \Sigma$, $(k_n) \in \mathfrak{F}(\omega)$ and $p \in N$, then the result of "substituting (k_n) for the pth variable" in $((u_n), (v_n))$ is in Σ , i.e., $((w_n), (x_n)) \in \Sigma$ where $w_n = u_n + k_n u_p$ for $n \neq p$, $w_p = k_p u_p$, and $x_n = v_n + k_n v_p$ for $n \neq p$ and $x_p = k_p v_p$.

(Note that these conditions (P1) to (P5) are, essentially, a restatement of conditions (i) to (v) in Grätzer [1, p. 170, Definition 2]; in condition (iv) we need only consider the one binary operation, hence

Received by the editors May 14, 1970.

AMS 1969 subject classifications. Primary 2090, 0630; Secondary 0830.

Key words and phrases. Equation, equational class, commutative semigroup, lattice, partition lattice, lattice law.

¹ Research supported by NRC Grant A7256.

² Research supported by NRC Grant A2985.

the different form of (P4).) $\Gamma(\Sigma)$ will denote the deductive closure of Σ .

Let \mathcal{L}' be the lattice of closed sets of commutative semigroup equations; then \mathcal{L}' is dually isomorphic to the lattice \mathcal{L} of equational classes of commutative semigroups.

For each $m \in \mathbb{N}$, let Π_m be the partition lattice on $\{1, 2, \dots, m\}$

THEOREM 1. For each $m \in N$, Π_m is (isomorphic to) a sublattice of \mathfrak{L}' .

PROOF. Let m be a fixed natural number. If $\pi \in \Pi_m$, we write $\equiv_{\mathbf{r}}$ for the equivalence relation on $\{1, 2, \dots, m\}$ induced by π . Let $\Sigma = \{ ((u_n), (v_n)) \mid \sum u_n, \sum v_n \ge 2m + 2 \} \cup \{ ((u_n), (u_n)) \mid (u_n) \in \mathfrak{F}(\omega) \}.$ It is clear from (P1) to (P5) that Σ is a closed set of equations. For each $\pi \in \Pi_m$, define a set $\Sigma(\pi)$ of equations as follows: $((u_n),(v_n))$ $\in \Sigma(\pi)$ iff there exist j, k with $u_n = v_n = 0$ for all $n \neq j$, k, $u_j + u_k = 2m$ $+1=v_j+v_k$, and either $u_j\equiv_{\pi}v_j$ or $u_k\equiv_{\pi}v_k$. Note that if $u_j+u_k=2m+1$ and $u_i \equiv_{\pi} v_i$ then $u_k > m$, thus u_k is not equivalent to anything modulo π . Then, since π is a partition, it follows that if $((u_n), (v_n)) \in \Sigma(\pi)$ and if $((v_n), (w_n)) \in \Sigma(\pi)$, then $((u_n), (w_n)) \in \Sigma(\pi)$. $\Sigma(\pi)$ is obviously symmetric. Applying (P4) to two equations in $\Sigma(\pi)$ yields an equation in Σ . Applying (P5) with $\sum k_n = 1$ to an equation in $\Sigma(\pi)$ yields either a trivial equation or an equation in $\Sigma(\pi)$; applying (P5) with $\sum k_n$ ≥ 2 and with $u_p \geq 1$ yields an equation in Σ ; and applying (P5) with $u_p = 0$ does not change the equation. Thus $\Sigma \cup \Sigma(\pi)$ is a closed set of equations.

For two partitions π_1 , π_2 , if $\pi_1 \wedge \pi_2$ and $\pi_1 \vee \pi_2$ are the meet and join of π_1 and π_2 in Π_m then

$$(\Sigma \cup \Sigma(\pi_1)) \cap (\Sigma \cup \Sigma(\pi_2)) = \Sigma \cup (\Sigma(\pi_1) \cap \Sigma(\pi_2)) = \Sigma \cup (\Sigma(\pi_1 \wedge \pi_2)).$$

Also it is clear that

$$(\Sigma \cup \Sigma(\pi_1)) \vee_{\mathfrak{L}'} (\Sigma \cup \Sigma(\pi_2)) = \Gamma(\Sigma \cup \Sigma(\pi_1) \cup \Sigma(\pi_2))$$

$$\subseteq \Sigma \cup \Sigma(\pi_1 \vee \pi_2).$$

Conversely, if $((u_n), (v_n)) \in \Sigma(\pi_1 \vee \pi_2)$, then there exist j, k with $u_n = v_n = 0$ for all $n \neq j, k$, $u_k + u_j = v_k + v_j = 2m + 1$ and, w.l.o.g. $u_j \equiv_{\pi_1 \vee \pi_2} v_j$. But then there exist w_1, \dots, w_p in $\{1, 2, \dots, m\}$ such that $w_1 = u_j, w_p = v_j$, and $w_i \equiv_{\pi_1} w_{i+1}$ for i odd, $w_i \equiv_{\pi_2} w_{i+1}$ for i even. Let $\alpha_i \in \mathfrak{F}(\omega)$ have jth entry w_i , kth entry $2m + 1 - w_i$, and all other entries zero. Then $\alpha_1 = (u_n), \alpha_p = (v_n)$ and $(\alpha_i, \alpha_{i+1}) \in \Sigma(\pi_1)$ for i odd and $(\alpha_i, \alpha_{i+1}) \in \Sigma(\pi_2)$ for i even. It follows that

$$((u_n),(v_n)) = (\alpha_1, \alpha_p) \in \Gamma(\Sigma(\pi_1) \cup \Sigma(\pi_2)).$$

Hence

$$\Sigma \cup \Sigma(\pi_1 \vee \pi_2) \subseteq \Gamma(\Sigma(\pi_1) \cup \Sigma(\pi_2) \cup \Sigma).$$

Thus we have

$$(\Sigma \cup \Sigma(\pi_1)) \wedge \varepsilon' (\Sigma \cup \Sigma(\pi_2)) = \Sigma \cup \Sigma(\pi_1 \wedge \pi_2)$$

and

$$(\Sigma \cup \Sigma(\pi_1)) \vee \mathfrak{L}' (\Sigma \cup \Sigma(\pi_2)) = \Sigma \cup \Sigma(\pi_1 \vee \pi_2).$$

If follows that the mapping $\pi \to \Sigma \cup \Sigma(\pi)$ is a homomorphism of Π_m into \mathfrak{L}' .

It is clear that if $\pi_1 \neq \pi_2$ then $\Sigma \cup \Sigma(\pi_1) \neq \Sigma \cup \Sigma(\pi_2)$; thus this homomorphism is one-to-one, and this yields the desired result.

THEOREM 2. & does not satisfy any special lattice laws.

PROOF. From D. Sachs [3] it is known that the family of partition lattices II_m , $m = 1, 2, \cdots$, does not satisfy any special lattice laws.

CONCLUDING REMARK. One might consider the possibility of embedding the dual of Π_{∞} into \mathfrak{L} , but a recent paper of P. Perkins [2] shows that this is impossible because \mathfrak{L} is countable, whereas Π_{∞} is uncountable.

REFERENCES

- G. Grätzer, Universal algebra, Van Nostrand, Princeton, N. J., 1968. MR 40 #1320.
- 2. P. Perkins, Bases for equational theories of semigroups, J. Algebra 11 (1969), 298-314. MR 38 #2232.
- 3. D. Sachs, Identities in finite partition lattices, Proc. Amer. Math. Soc. 12 (1961), 944-945. MR 24 #A3101.
- 4. R. Schwabauer, A note on commutative semigroups, Proc. Amer. Math. Soc. 20 (1969), 503-504. MR 38 #2233.

University of Waterloo, Waterloo, Ontario, Canada McMaster University, Hamilton, Ontario, Canada