EMBEDDING THE DUAL OF Π_n IN THE LATTICE OF EQUATIONAL CLASSES OF COMMUTATIVE SEMIGROUPS

STANLEY BURRIS and EVELYN NELSON

ABSTRACT. The lattice of equational classes of commutative semigroups does not satisfy any special lattice laws.

In [4] R. Schwabauer proved that the lattice \mathcal{L} of equational classes of commutative semigroups is nonmodular. In this paper we will prove a maximal extension of this result, namely, \mathcal{L} does not satisfy any special lattice laws.

The free commutative semigroup on countably many generators, $\mathfrak{F}(\omega)$, is the set of sequences $(u_n)_{n \in \mathbb{N}}$ of nonnegative integers, such that $u_n = 0$ for all but finitely many $n \in \mathbb{N}$ and $\sum u_n \geq 1$, with component-wise addition. [For convenience, we write (u_n) for $(u_n)_{n \in \mathbb{N}}$.]

A commutative semigroup equation is a pair $((u_n), (v_n))$ of elements of $\mathfrak{F}(\omega)$ (see [1]). A commutative semigroup (S, \cdot) satisfies the equation $((u_n), (v_n))$ iff, for every family (a_n) of elements of S,

$\Pi \{ a_n^m \mid u_n \neq 0 \} = \Pi \{ a_n^m \mid v_n \neq 0 \}$.

A set Σ of equations is closed [1, p. 170, Definition 2] iff it contains all trivial equations, is symmetric and transitive, and is closed under multiplication and substitution of terms for variables. Thus Σ is closed iff it satisfies the following conditions:

(P1): $((u_n), (u_n)) \in \Sigma$ for all $(u_n) \in \mathfrak{F}(\omega)$.

(P2): If $((u_n), (v_n)) \in \Sigma$ then $((v_n), (u_n)) \in \Sigma$.

(P3): If $((u_n), (v_n)) \in \Sigma$ and $((v_n), (w_n)) \in \Sigma$ then $((u_n), (w_n)) \in \Sigma$.

(P4): If $((u_n), (v_n)) \in \Sigma$ and $((u_n'), (v_n')) \in \Sigma$ then $((u_n + u_n'), (v_n + v_n')) \in \Sigma$.

(P5): If $((u_n), (v_n)) \in \Sigma$, $(k_n) \in \mathfrak{F}(\omega)$ and $p \in \mathbb{N}$, then the result of "substituting (k_n) for the pth variable" in $((u_n), (v_n))$ is in Σ, i.e., $((w_n), (x_n)) \in \Sigma$ where $w_n = u_n + k_n u_p$ for $n \neq p$, $w_p = k_p u_p$, and $x_n = v_n + k_n v_p$ for $n \neq p$ and $x_p = k_p v_p$.

(Note that these conditions (P1) to (P5) are, essentially, a restatement of conditions (i) to (v) in Grätzer [1, p. 170, Definition 2]; in condition (iv) we need only consider the one binary operation, hence

Received by the editors May 14, 1970.

AMS 1969 subject classifications. Primary 2090, 0630; Secondary 0830.

Key words and phrases. Equation, equational class, commutative semigroup, lattice, partition lattice, lattice law.

\footnote{Research supported by NRC Grant A7256.}

\footnote{Research supported by NRC Grant A2985.}

Copyright © 1971, American Mathematical Society

37
the different form of (P4). \(\Gamma(\Sigma) \) will denote the deductive closure of \(\Sigma \).

Let \(\mathcal{L}' \) be the lattice of closed sets of commutative semigroup equations; then \(\mathcal{L}' \) is dually isomorphic to the lattice \(\mathcal{L} \) of equational classes of commutative semigroups.

For each \(m \in \mathbb{N} \), let \(\Pi_m \) be the partition lattice on \(\{1, 2, \cdots, m\} \).

Theorem 1. For each \(m \in \mathbb{N} \), \(\Pi_m \) is (isomorphic to) a sublattice of \(\mathcal{L}' \).

Proof. Let \(m \) be a fixed natural number. If \(\pi \in \Pi_m \), we write \(\equiv \) for the equivalence relation on \(\{1, 2, \cdots, m\} \) induced by \(\pi \). Let
\[
\Sigma = \{ ((u_n), (v_n)) \mid \sum u_n, \sum v_n \geq 2m + 2 \} \cup \{ ((u_n), (u_n)) \mid (u_n) \in \mathcal{F}(\omega) \}.
\]

It is clear from (P1) to (P5) that \(\Sigma \) is a closed set of equations. For each \(\pi \in \Pi_m \), define a set \(\Sigma(\pi) \) of equations as follows: \(((u_n), (v_n)) \in \Sigma(\pi) \) iff there exist \(j, k \) with \(u_n = v_n = 0 \) for all \(n \neq j, k \), \(u_j + u_k = 2m + 1 \) = \(v_j + v_k \), and either \(u_j = v_j \) or \(u_k = v_k \). Note that if \(u_j + u_k = 2m + 1 \) and \(u_j = v_j \), then \(u_k \neq 0 \). This is not equivalent to anything modulo \(\pi \). Then, since \(\pi \) is a partition, it follows that if \(((u_n), (v_n)) \in \Sigma(\pi) \) and if \(((v_n), (w_n)) \in \Sigma(\pi) \), then \(((u_n), (w_n)) \in \Sigma(\pi) \). \(\Sigma(\pi) \) is obviously symmetric. Applying (P4) to two equations in \(\Sigma(\pi) \) yields an equation in \(\Sigma \). Applying (P5) with \(\sum k_n = 1 \) to an equation in \(\Sigma(\pi) \) yields either a trivial equation or an equation in \(\Sigma(\pi) \); applying (P5) with \(\sum k_n \geq 2 \) and with \(u_p \geq 1 \) yields an equation in \(\Sigma \); and applying (P5) with \(u_p = 0 \) does not change the equation. Thus \(\Sigma \cup \Sigma(\pi) \) is a closed set of equations.

For two partitions \(\pi_1, \pi_2 \), if \(\pi_1 \wedge \pi_2 \) and \(\pi_1 \vee \pi_2 \) are the meet and join of \(\pi_1 \) and \(\pi_2 \) in \(\Pi_m \), then
\[
(\Sigma \cup \Sigma(\pi_1)) \cap (\Sigma \cup \Sigma(\pi_2)) = \Sigma \cup (\Sigma(\pi_1) \cap \Sigma(\pi_2)) = \Sigma \cup (\Sigma(\pi_1 \wedge \pi_2)).
\]

Also it is clear that
\[
(\Sigma \cup \Sigma(\pi_1)) \cup \mathcal{L}'(\Sigma \cup \Sigma(\pi_2)) = \Gamma(\Sigma \cup \Sigma(\pi_1) \cup \Sigma(\pi_2))
\]
\[
\subseteq \Sigma \cup \Sigma(\pi_1 \wedge \pi_2).
\]

Conversely, if \(((u_n), (v_n)) \in \Sigma(\pi_1 \wedge \pi_2) \), then there exist \(j, k \) with \(u_n = v_n = 0 \) for all \(n \neq j, k \), \(u_j + u_k = v_j + v_k = 2m + 1 \), and, w.l.o.g., \(u_j \equiv \pi_1 v_j \). But then there exist \(w_1, \cdots, w_p \) in \(\{1, 2, \cdots, m\} \) such that \(w_1 = u_i, w_p = v_i \), and \(w_i \equiv \pi_i w_{i+1} \) for \(i \) odd, \(w_i \equiv \pi_i w_{i+1} \) for \(i \) even. Let \(\alpha_i \in \mathcal{F}(\omega) \) have \(f \)th entry \(w_i, k \)th entry \(2m + 1 - w_i \), and all other entries zero. Then \(\alpha_1 = (u_n), \alpha_p = (v_n) \) and \((\alpha_i, \alpha_{i+1}) \in \Sigma(\pi_i) \) for \(i \) odd and \((\alpha_{i}, \alpha_{i+1}) \in \Sigma(\pi_2) \) for \(i \) even. It follows that
\[
((u_n), (v_n)) = (\alpha_1, \alpha_p) \in \Gamma(\Sigma(\pi_1) \cup \Sigma(\pi_2)).
\]

Hence
\[\Sigma \cup \Sigma(\pi_1 \lor \pi_2) \subseteq \Gamma(\Sigma(\pi_1) \cup \Sigma(\pi_2) \cup \Sigma). \]

Thus we have
\[(\Sigma \cup \Sigma(\pi_1)) \land \mathcal{L} \cdot (\Sigma \cup \Sigma(\pi_2)) = \Sigma \cup \Sigma(\pi_1 \land \pi_2) \]
and
\[(\Sigma \cup \Sigma(\pi_1)) \lor \mathcal{L} \cdot (\Sigma \cup \Sigma(\pi_2)) = \Sigma \cup \Sigma(\pi_1 \lor \pi_2). \]

It follows that the mapping \(\pi \rightarrow \Sigma \cup \Sigma(\pi) \) is a homomorphism of \(\Pi_m \)
into \(\mathcal{L} \).

It is clear that if \(\pi_1 \neq \pi_2 \) then \(\Sigma \cup \Sigma(\pi_1) \neq \Sigma \cup \Sigma(\pi_2) \); thus this homomorphism is one-to-one, and this yields the desired result.

Theorem 2. \(\mathcal{L} \) does not satisfy any special lattice laws.

Proof. From D. Sachs [3] it is known that the family of partition lattices \(\Pi_m, m = 1, 2, \cdots \), does not satisfy any special lattice laws.

Concluding Remark. One might consider the possibility of embedding the dual of \(\Pi_m \) into \(\mathcal{L} \), but a recent paper of P. Perkins [2] shows that this is impossible because \(\mathcal{L} \) is countable, whereas \(\Pi_m \) is uncountable.

References

University of Waterloo, Waterloo, Ontario, Canada

McMaster University, Hamilton, Ontario, Canada