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Lattice-theoretic decision problems in universal algebra

Stanley Burris!) and H. P. Sankappanavar?)

§1. Introduction

As an introduction to our study of lattice-theoretic decision problems perhaps a
brief survey of several significant results already in print would be appropriate. In
1949 Tarski [25] showed that the first-order theory of the lattices of subspaces of two-
dimensional projective geometries (whose points have homogeneous rational coor-
dinates) is undecidable. Decidability questions for the theories of closure algebras and
Brouwerian algebras (which appear in the study of topology) were discussed by
Grzegorczyk in [8]. Kargapolov [11] initiated the study of decision problems for
lattices of subgroups by showing the undecidability of the theory of the class of lattices
of subgroups of Abelian groups. (Since subgroups of Abelian groups are normal this
result can be viewed as an undecidability result for lattices of congruences of Abelian
groups.) The lattices of subgroups of more restricted classes of groups were subsequently
analyzed by Kargapolov [11], Kozlov [12] and Taitslin [23]. In [21] Taitslin proved
that the theory of the lattice of ideals of a polynomial ring with at least two unknowns
is hereditarily undecidable, whereas the case of a polynomial ring in one unknown
leads to a decidable theory.

In this paper we continue the above studies by examining lattices of subrings of
rings with unity, congruence lattices of semigroups and unary algebras, and lattices of
varieties. Several of our theorems are based on results in the theory of lattices of
partitions.

§2. The method of semantic embedding for undecidability proofs

In 1964, Rabin [19] presented a method for establishing undecidability. A similar
method was used by Ershov and Taitslin (see [5]) to prove the recursive inseparability
of T and T for a theory T (these terms will be defined below). These elegant methods
call for the semantic embedding of one theory into another and generalize techniques
of Tarski [24].

A language means a first-order language with equality which has only a finite
number of non-logical symbols. We denote by E(L) the set of sentences in a language
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L. A theory T based on a language L (in short, in L) is a subset of E(L) which is closed
under logical deduction. A sentence oeL is called finitely refutable in T iff there exists
a finite model of T"in which —¢ is true. We denote by T;, the set of all sentences in L
which are true of all the finite models of 7, and T, denotes the set of all finitely
refutable sentences in L. (It is obvious that Tp=E(L)\Ty;,.)

Let L be a language and let ¢y, ..., ¢, be constants not appearing in L. We denote
by L[c;,..., ¢,] the extension of L obtained by adding the symbols ¢, ..., ¢, to L. If T
is a theory in L, an inessential extension of T is a theory in L[cy,..., ¢,], for some
constants c¢y,..., ¢,, which is the closure of T" with respect to logical deduction in
L[ey,..., ¢,). If A is a structure of L with universe M and a, ..., a,e M, we denote by
(M} ay,...,a,) the structure of L[¢,,..., c,] obtained from .# by the addition of
ay,..., a, as distinguished elements with the understanding that c; is interpreted as
a;, l<i<n.

DEFINITION. Let L be a language with k binary predicate symbols p,, ..., p;, L,
another language (not necessarily distinct from L) and let ¢y, ..., ¢, be constants not in
L,. Let 6(x) and ¢,(x, ), ..., x(x, y) be formulas of L,[ec,,..., c,]. Given a structure
M of Ly with universe M, and a,,..., a,e€ M, we define a structure of L — denoted by
M0, 015, Ok @y, ..., @,) — induced by 6, gy, ..., 0, as follows:

*’41(5991’---: Qk; al!'"!an):(D; Rla--" Rk>
where
D={aeM,:{M,;ay,...,a,>F5(a)},
and
Ri={¢a,byeM}:a,beD and (AM,;ay,...,a, Fe; (a,b)}), i=1,.. k.

We shall now state the basic result we need which is a blending of the
theorems of Rabin (see [19], Theorem 1) and of Ershov and Taitslin (see [5],
Theorem 3.3.2).

THEOREM 2.1. Let T be a theory in a language L with the property that the sets T
and T are recursively inseparable. Let Ty be a theory in another (not necessarily distinct
JSrom L) language L,. Assume that there exist constants c,, ..., ¢, not in L, and formulas
3(x), 01(x, ¥)s -, 0x (x, ¥) of Ly[¢y, ..., €,] such that

(1) for every finite model N of T there exists a finite model M, of T, and elements
ay,..., a, of My such that the induced structure M (0, 0,,..., 0x; Gy,..., @)= AN, and

(2) for every model My of Ty and for every a, ..., a,e M,, the induced structure
M (9, 04,..., 0k; Gy, ..., @,) is a model of T.

Then T, and T\ ; are recursively inseparable.

In the rest of the paper, if a theory T and T are recursively inseparable then we
simply say that T is recursively inseparable.
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§3. The elementary theory of partition lattices

Let IT, denote the lattice of all partitions on a set 4 which, as is well-known, is
isomorphic with the lattice of equivalence relations on 4. Let L; be the language of
lattices with the two binary operation symbols v and A as its non-logical symbols.
Throughout this section 2 denotes the class of all partition lattices. We denote by
Th(2) the theory of Z, i.e. the set of all sentences in L, which are true of every
partition lattice.

THEOREM 3.1. Th(Z) is recursively inseparable.

Proof. Let T’ be the theory of two equivalence relations. It is shown in Lavrov [13]
that 7' and 7, are recursively inseparable. Letting { be the sentence Jx3y3ziw
(x#y & x#z & x#w & y#z & y#w & z#w) we will choose for the T of Theorem
2.1 the theory axiomatized by 7" u {&}.

It is easy to write down in L, formulas Atom(x), Coatom(x) and Max(x) which
say respectively that ‘x is an atom’, ‘x is a coatom’ and ‘x is the greatest element’. It is
also possible to write down a formula Config(x) in L; which asserts that ‘for an ele-
ment x the sublattice of elements less than or equal to x is isomorphic with .#;’
(see Figure 1).

Fig. 1.

Let #°'={A, R,, R,) be a model of T, and we choose .#,=11,. Let ng, and mg,
be the partitions on A associated with R, and R,. We further pick two new constants
¢, and ¢,, and consider the following formulas in L, [¢,, ¢, ], where x<y is an abbrevia-
tion for x=xAy:

def
5(x)« Coatom(x) &VyVz[(y#z & Atom (y) & Atom (z) &
& Max(x v y) & Max(x v z)) —» Config(y v z)],
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and for i=1, 2,
def
0i (x,9)=d(x) & (y) & [x#y—Iz(Atom(z) & z<¢; &
& Coatom(zv (xA y)) &T16(zv (x A »)))].

Given ae A we define a partition 7, on A by n,={{a}, 4— {a}} which is clearly a
coatom (i.e. maximal element # 1) in IT,. We want to single out precisely the coatoms
of the form n, with ae4 by a formula in L,[¢,, ¢,], and we claim that the formula
d(x) does this for us.

CLAIM 1. IT,Eé(n) iff = is of the form =, for some ae A. To prove this, let ae A
and we first show that IT, F 6(n,). Since £ T it follows that |4| >4 (as A" is a model of
T). Let my and n, be any two distinct atoms in IT, such that n,vm,=1=mn,vn,
(where 1 denotes the largest partition). It is clear that we can write n; and =, as

n;={{a, e;}} U {{b}: be A, b#a, e},
where e;e 4 — {a}, i=1, 2, and e, #e,. Then
v, ={{a, e, e;}} U {{b}: beAd, b#a,e,,e,}.

Observe that the elements below =, v n, are precisely 0, n,, 7,, 73 and 7, v n,, where
0 is the smallest partition, and

ny={{es, e2}} U {{b}: bed, b#e,, e,}.

From this it is easy to see that [0, n; v m,] = M, proving that IT,F §(r,). Conversely,
suppose IT,kd(n). We want to show that n=r, for some ae A. Assume that 7, for
any a€A; then n={F, A— F} where FE A, |F|>2 and |4A—F|>2, hence there exist
elements f}, f,€F with f; #/, and g,, g,€ 4 — F with g, # g,. Now consider the follow-
ing partitions on A:

"'ti:{{fi’gi}}u{{b}:beA’b"léfbgi}! £=1»2'

These are both atoms in IT, and nv n;=1, i=1, 2. Since n, v i, = {{ f}, &1}, { f2, &2}}
U {{b}: bed, b# 11,13, &, &2}, it follows that |[0, n, v n,]| =4 and hence [0, 7, v 7,]
is not isomorphic with .# 5, implying that IT,}¥é(r) which is a contradiction — hence
claim 1 is proved.

It should be noted that IT,kd(n) iff {11 ,; ng,, ng,> Ed (7).

CLAIM 2. For a, beA, {a,b)eR,iff (Il ;; g , ng,>F 0(m,, m,), i=1, 2. The case
a=b is trivial, so let {a, b) € R;, a#b. Define a partition = on 4 by n={{a, b}} U {{h}:
heA, h+#a, b}. Then, for i=1, 2, n is an atom and n<nx,. Also n v (n, A 1) = {{a, b},
A—{a, b}} which is a coatom and is not of the form n,, he A. This shows that {IT;
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TtR,» TRy F Qi (T4, M), i=1, 2. Conversely, suppose @; (n,, m,) is true in {1 4; ng,, 7tg,)-
Then there is an atom partition n={{c, d}} U {{h}: he A, h+#c, d}, ¢, de A such that
n<mg, and nv (7, A m,) is a coatom which does not satisfy 6. From this it follows that
{e, d}={a, b}, and sinc> n<ng,, we conclude that {a, b)€R;, proving the claim.

From claims 1 and 2 it is immediate that if D= {n,ell,: aeA} and Eq;={{z,,
myy: (I 45 Tg,, ipy) F Qi (s M), }, i=1, 2, then (D, Eq,, Eq,>={A, Ry, R,>. Thus (1)
of Theorem 2.1 holds, and (2) is easily checked, hence the theory of all IT, with
| 4| >4 is recursively inseparable. Consequently 7% (Z) is recursively inseparable.

In the following corollary Mod T denotes the class of all models of a theory T.

COROLLARY 3.2. For any infinite set A, Il ;¢ Mod Th({I1,: new}).

Proof. Since the theory T used in the above theorem is finitely axiomatized and
since T and T are recursively inseparable, it follows that T and Ty;, are distinct.
Hence there exists a sentence o in the language of T such that €T}, and "o is true in
some infinite model of T. By Lowenheim-Skolem’s Theorem there exists a model A" of
Tu {—10} whose universe has cardinality equal to that of 4 and thus we may take
A" to be (A, Ry, R,) for suitable R,, R,. Now if we let A, =(II ;; mg , mg,) then the
induced structure is isomorphic with 4" as shown in the proof of the above theorem.
From this it follows that the translate 7(¢) of ¢ into L;, whereby the quantifiers are
relativized to 8(x), P; is replaced by g;, and the (inessential) constants ¢, ¢, are
replaced by universally quantified variables, fails in IT ,, and for n>4 we have IT . F t(0).
From this it is easy to see that t(¢ — ¢)eTh({Il,: new})—Th(I1,).

The following corollary is an improvement on Theorem 3.1.

COROLLARY 3.3. Let K, be a class consisting of infinitely many distinct finite
partition lattices (or infinitely many distinct duals of finite partition lattices.) Then
Th(K,,) is recursively inseparable.

Proof. Note that any II,,, mew, is isomorphic to a subinterval of IT, if m <n.

COROLLARY 3.4. Th(I1,) and Th(dual of I1,,) are hereditarily undecidable (i.e.
every subtheory is undecidable).

Proof. Every finite partition lattice is isomorphic to some interval of IT,, so the
corollary is immediate.

§4. Rings and algebras over a field

In this section we apply a result of the last section to the theories of lattices of
subrings of rings with unity and of lattices of subalgebras of algebras over the field Z,
where p is prime.
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LEMMA 4.1. Thering<{Z,, +, -, —,0, 1) is primal for every prime p.
Proof. We need to show that every n-ary function, for new, is a polynomial. Let
f:Z,— Z, be a function, and consider the n-ary polynomial:

Z 1!1&" yl;!n (xi_y)
P(xl,xz,...,xn)=m.....an 1—[ (H (a;__—y))'f(ﬂla---,an)-

1sisn My#a

It is straightforward to verify that f(ay,..., a,)=p(a,, ..., a,) for a,,..., a,€ Z,, so the
lemma is proved.
Let new with n>1 and let p be a prime.

DEFINITION. For each subring R of Z we define an equivalence relation E (R)
on n by

E(R)={<i,jyen*:V [ (feR—f()=f(}))}-
(It is a simple matter to verify that E (R) is indeed an equivalence relation.)

DEFINITION. For an equivalence relation £ on n we define a subset R(E) of
Z, by
R(E)={feZy: f(i)#f(j)—i,j>¢E}.

LEMMA 4.2. R(E) is a subring of Z,, and 1€ R(E).

Proof. Trivially the functions 0 and 1 are in R(E). Since the members of R(E) are
by definition constant on each equivalence class of R, it is immediate that R(E) is
closed under the operations +, + and —.

LEMMA 4.3. For a subring REZ,, R=R(E(R)) if leR.

Proof. If R=Z, then E (R) has just one equivalence class, namely the set n itself
and so the lemma is obviously true. Hence we suppose that R has at least one element
which is not a constant function. It is clear by definition that R< R(E (R)). Suppose
% denotes the characteristic function of an equivalence class 4 of E (R). Then observe
that every member of the ring R(E (R)) is of the form )’ ¢;x,, where ¢; is constant and
A; is an equivalence class of E (R). Hence the proof of the lemma is complete if we
show that the characteristic functions of the equivalence classes of E (R) belong to R.
Let A4; be a proper equivalence class of E (R). For j¢ A; choose a function fe R such
that f(k)# 1 (j), where ke A;. If f (k) =0 for k€ A, replace f by f+ 1. Define 0,:Z, > Z,
by 0;(f(j))=0,0;(f(k))=1forkeA, and 0, is arbitrary otherwise. Then by Lemma
4.1 there exists a polynomial p(x) such that 6;=p. From this it follows that 0, feR.
Since x4,=]];44, 0/, we have that y, eR.
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LEMMA 4.4. If E is an equivalence relation on n then E=E (R(E)).

Proof. Trivial.

It is obvious that if R,, R, are subrings of Z then R; S R, implies E (R;)2E (R;),
and if E,, E, are equivalence relations on n then E,<E, implies R(E,)2R(E,).
Hence Lemmas 4.3 and 4.4 yield the following.

THEOREM 4.5. The lattice of subrings with unity of Z is isomorphic with the
dual of I1,.

THEOREM 4.6 Let K be a class of rings with unity such that Z ;e K for p prime
and for infinitely many distinct n;. If T is the theory of lattices of subrings with unity of
rings in K then T is recursively inseparable.

Proof. The theorem is an immediate consequence of Corollary 3.2 and Theorem

4.5.

COROLLARY 4.7. Let K be a class of algebras over the field Z, for p prime such
that Z je K for infinitely many distinct n. If T is the theory of lattices of subalgebras over
Z, of algebras in K then T is recursively inseparable.

Proof. The corollary follows from Corollary 3.3, Theorem 4.5 and noting that
subrings with unity of Z are indeed subalgebras over Z,.

Remark. We note that in Theorem 4.5 only the fact that Z,, is primal is used. From
this observation one can see that the lattice of subalgebras of .2/" where .27 is a primal
algebra is isomorphic to the dual of IT, and hence it follows that the theory of the
subalgebra lattices of algebras in a variety generated by a primal algebra is recursively
inseparable.

COROLLARY 4.8. The theory of the subalgebra lattices of Boolean algebras is
recursively inseparable.

Remark. 1t is interesting to point out that it is a consequence of the results proved
in a remarkable paper by Rabin (see [20]) that the theory of congruence lattices of
countable Boolean algebras is decidable.

§5. The lattice of varieties of type ©

The notation is taken from Griatzer [7]. A type t of algebras is a sequence
{ng, ny,..., n,,...> of non-negative integers n,, ye0(r), where 0(z) is an ordinal. For
every y€0(t) there is given an n,-ary operation symbol f,. If 7 is a type, the multiplicity
type p associated with 7 is u=<{mqy, my,..., my,...»; <, where m; is the number of i-ary
operations. We denote by £ () the lattice of varieties of type 7 (it is well-known that a
precise definition of #(t) can be given using the deductively closed sets of identities).
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THEOREM 5.1. If0(t)=>wor Y. i*m;> 1 then Th(Z () is hereditarily undecidable
(i.e. every subtheory is undecidable).

Proof. Suppose 0(t)=w or ) i-m;>1. This implies either my>w or m,;>2 or
m;>1 for some j>2. Then .# (1) contains the dual of T, as an interval as shown by
Burris [1]. Hence the result follows from Corollary 3.4.

However, we have some positive results.

THEOREM 5.2. If my<w, m;=0, i#0 then Th(Z(v)) is decidable.
Proof. Observe that £ (t)= I,  which is finite.

THEOREM 5.3. Th(%{1)) is decidable.
Before proving this theorem we list three well-known theorems and prove some
lemmas.

THEOREM 5.4. (Presburger [18]). Th({w, +)) is decidable and hence Th
(Cw, <)) is decidable.

THEOREM 5.5. (Mostowski [15]). Th({w— {0}, | ») is decidable where ‘|’
denotes the divisibility relation.

THEOREM 5.6. (Fefferman-Vaught [6]). The theory of the direct product of two
algebraic systems is decidable if each factor has a decidable theory.

LEMMA 5.7. Let & be a lattice. If Th({L, <)) is decidable then Th({L, v, A) is
decidable.

Proof. It is sufficient to observe that the operations v and A are explicitly
definable in terms of <. For example the following formula J(x, y, z) defines v :

def
J(x,p,2)ox<z & y<z & Vw((x<w & y<w)—>z<w).

DEFINITION. Let Z={P, <) be a poset. We define #* to be the poset { Pu {1},
< ) where 1 is a new element adjoined to P such that every element of P is less than 1
and Z, to be the poset ( Pu {0}, <) where 0 is a new element adjoined to P such that
every element of P is greater than 0.

LEMMA 5.8. Th(Z) is decidable implies Th(?*) and Th(Z*) are decidable.

Proof. Enrich the language of posets by adding 1 as a constant and consider the
following conversion process: if a formula y is of the form 3x¢ (x, y) then define ¥,
as dx(¢(1, y) v ((x#1) & ¢(x, §))) and if it is of the form Vx¢ (x, 7) then define ¥, as
Vx(¢(1, ¥) & ((x#1)— ¢(x, 7))). Now let ¢ be an arbitrary sentence and we may
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suppose that ¢ is in its prenex normal form. Apply the above process first to the inner-
most quantifier then to the second innermost quantifier etc. until all quantifiers have
been relativized to P. If an atomic formula in our new sentence is of the form 1<1,
x<1 or 1 <xthen we can replace it with x=x or x# x as the first two cases would be
true, the third false. The resulting sentence would be equivalent to a sentence about 2
in our original language, hence decidable. Thus T/h(2*) is decidable. Likewise Th(Z,)
is decidable.

Proof of Theorem 5.3. It is well-known (see Jacobs and Schwabauer [9]) that every
proper variety in £ (1)) is 1-based and the equation which forms the basis for that
variety is in one of the following forms, where f is the fundamental operation:

fix)=r"(x);
fi(x)=r(»);

or

or
x=y.

Thus with each proper variety we can associate a pair {i,j> where i, jew. The
ordering induced by the set-theoretical containment of the varieties is given by

G,jy<<i,j'y iff i<i’, and j#0 implies j |j’, and j<j'.

From this it follows that (L({1)), <> = ({w, <) x (Kw—{0}, | »)«)*, where L({1}) is
the universe of £ ({1)).

Now from Theorem 5.5 Th({w, <)) is decidable ,and from Theorem 5.5 and
Lemma 5.8 Th((<w— {0}, | »)s) is decidable. Hence using Theorem 5.6 and Lemma 5.8
we conclude that Th({L({1)), <)) is decidable. The proof is complete in view of
Lemma 35.7.

THEOREM 5.9. Th(Z ({1, 0))) is decidable.
The proof of this theorem depends on the following lemma which is easily verified.

LEMMA 5.10. Let o/ ={A, R) where R is a binary relation and let ¢(x, y) be a
formula in the language of 7. Furthermore let #={{{a,bye Ax A: AF ¢(a, b)}, R).
Then Th(Z) is decidable implies Th(%) is decidable.

Proof of Theorem 5.9. An equational basis of any variety of type (1, 0> is one of
the following, where a is the distinguished constant:

{x=x};
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or
{/"x)=f"" (x), f(@=/"""(a)} with t<m;k,r#0andr|,k where | ,isa
“divisibility’ relation on ® defined by r | , k iff r<k, and r#0 implies r | k;

or

{f"x)=r"(a)} with t<m.

Thus with each proper variety we can associate a 4-tuple {m, k, t,r) wherem, k, t, re
w,t<m,r | « k, and k=0« r=0. The ordering induced by the ordering of the varieties
is given by {m, k, t, ry<<m', k', t',r') iff m<m', k | 4 k', t<t’and r | . r'. From this it
can be seen that ({1, 0>)= (¥, x &,)* where

Ly ={{{m, t): t<m}, <5
and
Ly ={kryir| ok & (k=0or=0)}, | .

From Lemma 5.10and Theorem 5.6 Th(%#, x .%,) is decidable, hence it follows that
Th(£ (<1, 0))) is decidable.

The cases 1 <my<w, my=1and m;=0 for j>2 are open. (We strongly suspect
Th(Z (7)) is decidable in these cases.)

§6. The theory of congruence lattices of semilattices

By a semilattice we mean a A -semilattice and we denote by Con % the congruence
lattice of a semilattice <. Given a€ S, define a relation @ on S by {x, ydediff x ra=
¥y Aa. Papert [17] has shown that Con.% is pseudocomplemented and for a€ S, 4 is a
closed element (i.e. 4=0%, the pseudocomplement of some #eCon.¥) in Con¥;
furthermore the set of all closed elements in Con.% forms a Boolean lattice. If a is an
element of a lattice then [a@) denotes the set of all elements which are greater than or
equal to a.

Recall that L, is the language of lattices; in L, we can write down a formula
Min(x) which asserts that x is the smallest element. Let us define in L, the formula
Dense (x) by

def

Dense(x)«<Yy(—1Min(y)—» 1 Min(x A y).

It is useful to note that in a pseudocomplemented lattice an element a is dense iff a* =0.
We denote by % the class of all congruence lattices of semilattices and Th(%) denotes
the theory of € in L,, which of course is the set of all sentences in L, that are true in
every member of ¥,

We shall now give another application of Theorem 2.1.
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THEOREM 6.1. Th(¥) is recursively inseparable.

Proof. Let us take T to be the theory of an irreflexive, symmetric binary relation R.
It is shown in Ershov [5] that T and T, are recursively inseparable.

Let # ={A, R) be a model of T with |4|>3. With each pair a, be A such that
{a, b>e R we associate a new symbol t,, and require #,,=1t,,. Let 4, ={t,,: {a, b)eR}
and let 0 be a new symbol which is neither in 4 nor in 4,. We now let S=A4 U 4, LU {0},
and define an operation A :Sx S— S as follows:

(i) if seS, put sAs=sand sA0=0A5=0;

(ii) if @, be A with a#b, putanb=bra=0;

(iii) if @, be A, put ty,Aa=aAt,=a;

(iv) if a, b, ce A, put ty, A l,.=a;
and

(v) if a, b, ¢, de A and {a, b} n {c, d} =¢ then define 1, A ?.,=0.

It is easy to see that A is defined for every pair {s,, 5,>€Sx S and that (S, A) is
indeed a semilattice. This construction is illustrated in Figure 2 where A= {a, b, ¢, d, e}

and R={{a, b, a, ¢y, <b, ¢, {c, d), (b, a), ¢, @), ¢, b), {d, c)}.

lab tac the ted
a \\ d e
0
Fig. 2.

Let us choose .#;=Con ¥ and consider the following formulas in L;:

def

d(x)«> Coatom (x) & Dense (x),

def

o(x, ) d8(x) & 6(y) & 3z(Dense(z) & Coatom(z) & z>x A y).

CLAIM 1: Con & k() iff 0=4 for some aeA. To prove claim 1, we suppose
a€A and show that Con& Fd(4). It is easy to notice that 4 has precisely two con-
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gruence classes, namely [a) and S — [a), and hence 4 is a coatom in Con.%. Since 4 is
closed in Con &, it follows that 4 is not dense in Con #; thus Con & k §(4). Converse-
ly, let Con ¥ kd(0). Since 0 is a coatom, 0 has exactly two congruence classes (as
{0, 1} is the only simple semilattice), say Jand S— 1 If |InA|>2 and [(S—I)nA|>
2, then the element 0 would belong to each of them and we would have a contradic-
tion. Hence we may suppose, w.l.0.g., that |[Tn 4| <1. Let us assume that 7and 4 are
disjoint. Then ASS —7 and so 0€S —/ because |4|>3. From this it immediately
follows that I = A,. Since the meet of any two distinct elements of A4, is either an ele-
ment of A4 or the element 0, it follows that /= {z,,} for some a, b € 4. Thus 0 has two
congruence classes, viz. {t,,} and S — {z,,}, which implies that 0 is dense in ConS,
giving a contradiction. So we conclude that |/~ A|=1, hence let aeA be such that
InA={a}. Then A—{a}=S—1Iand so 0eS —Isince |4|>3.If t€S is such that r > a
and reS—1, then {t,0) €6 which implies {(a, 0) €0 and so aeS —1I, giving a con-
tradiction. So ¢ > a implies t €1, i.e. [@)=I. On the other hand if s€ S is such thata £ s
and s €l then 0=a A s €/ which is impossible. Thus / =[a) and hence =4, ae A. This
proves claim 1.

CLAIM 2. For {a, by € 4%, {a, by eR iff Con & k (4, b).

Proof of claim 2. Suppose {a, b) € R and let o be a congruence with just two classes
{t,} and S — {r,,}. Then clearly « is a coatom which is dense in Con %. Since the con-
gruence classes of dA b are [@)n [b), [a)n (S—[b)), [6)n (S —[a)) and (S —[a))n
= (S —[b)) and since [a) [b)={t,}, it is clear that #,,=d A b. Observe that ¢>1,,
hence a>d A b in which the equality clearly does not hold since d A b is not maximal.
Thus Con¥ kg(d, b). To prove the converse, suppose Con¥ kg(4, b). The con-
gruence classes of @A b are precisely [a)n[b), [@)n (S —[b)), (S—[a))n[b) and
(S—[a))n (S —[b)). Suppose <a, bY¢R; then [a)n [b) is empty and hence we see
that the congruence classes of d A b are [a), [b) and S —([a) [b)). Then we assert
that if 6 is any congruence on &% such that 6>d@A b then =4 or 0=5 or 0 is the
greatest congruence on .%°. For, the only possibilities are:

(i) <a, b) €6, which implies {a, 0> €0 and hence 6 has just one class, so 0 is the
greatest congruence;

(ii) <a,f) €0 for some feS —([a)n[b)). This means the congruence classes of
0 are [b) and S —[b), so =b; and

(iii) <b, 1) €0 for some feS —([a) N [b)) which, as in (ii), implies 0=4.

This shows that there is no dense congruence which contains @A b because 4, b
and the greatest congruence are all closed in Con %, This proves claim 2.

Claims | and 2 imply that condition 1 of Theorem 2.1 holds.

On the other hand it is easy to verify that {{d, b): Con#F (4, b)} is an irreflexive
symmetric relation on {4: ae A} which implies that condition 2 of Theorem 2.1 holds.
Hence the proof of the theorem is complete.
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COROLLARY. Let K be the class of all those lattices £ which have the following
properties:

(1) & is upper-semimodular,

(2) every interval [a, b] in & is pseudocomplemented,

(3) & is coatomistic, and

(4) & is an algebraic lattice.

Then Th(K) is recursively inseparable. _

Proof. The corollary follows immediately from the theorem and the fact that the
congruence lattice of a semilattice has all the properties above (see Papert [17]).

§7. Congruence lattices of semigroups

A variety is an equationally defined class of algebras of the same type. A subvariety
of V¥ is a subclass of ¥ which is a variety. It is well known that the subvarieties of V
form a lattice which we denote by # (V). The atoms of # (V') are called the equa-
tionally complete varieties.

In this section we consider only the varieties of semigroups. The following defini-
tions are taken from Evans [4]:

% =the lattice of varieties of semigroups, defined by («): x(yz)=(xy) z;

Z,=the variety of left-zero semigroups, defined by {xy=x, a};

Z,=the variety of right-zero semigroups, defined by {xy=y, «};

C =the variety of constant semigroups, defined by {xy=zt, «};

A,=the variety of all Abelian groups satisfying x"=1, which may be defined as a
variety of semigroups by

{xy=px,X"y=y,a};

A,, ,=the variety of all commutative semigroups defined by
{x"=x"*" xy=yx,a}.

We note that 4, , is the variety of semilattices. It was first shown by Kalicki and Scott
[10] that the equationally complete varieties of semigroups are the varieties Z,, Z,,
A, ,;, Cand A, for p prime.

THEOREM 7.1. Let V be a variety of semigroups which is not a variety of groups.
Then the theory of the class of all congruence lattices of semigroups in V' is recursively
inseparable.

Proof. It is known that a variety of semigroups consists entirely of groups iff it
does not contain Z,, Z,, C or A, ; (see Evans [4]). Hence it follows that V" contains
either Z,, Z,, C, or A, ;. Now itis easy to see that if e Z, or e Z, or #€C then any
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equivalence relation on S is a congruence on % and hence the congruence lattice of
& is isomorphic with the partition lattice on the universe of .%. Hence by Theorem
3.1 the theory of the congruence lattices of semigroups in Z,, or Z, or C is recursively
inseparable. Also we have the theory of the class of all congruence lattices of semi-
groups in A4, , (i.e. of semilattices) is recursively inseparable by Theorem 6.1. From
this it follows that the theory of the class of all congruence lattices of semigroups in
V is recursively inseparable.

THEOREM 7.2. The theory of the lattice of varieties of semigroups satisfying xy=
yx is hereditarily undecidable, as well as the lattice of varieties of semigroups satis-
Sfring x*=x3.

Proof. It is shown in Burris and Nelson [2] that the lattice of varieties of semi-
groups satisfying xy= yx contains an interval isomorphic to the dual of IT,, for every
mew and in [3] that the lattice for x>=x> has a subinterval isomorphic to the dual
of the partition lattice of an infinite set. Hence the theorem follows from Corollary
3.3 and Corollary 3.4.

Remark. Finally we wish to note that the lattice of varieties of commutative
monoids is isomorphic to .#({1)), hence decidable.

§8. Varieties of unary algebras

Let ¥~ be a non-trivial variety of unary algebras of type 7, i.e. t=(1, 1,...> and for
some /€Y, o/ fx=y. F,(w) denotes the free algebra in ¥ on the generators
X0, X1,.... Let P denote the set of polynomials of type 7. Define a subset T of P by

T={p(xo)eP: for geP, F (w)fgp(x)=x}
and let 7= {{p(x;), p(x;)>: peT} U 4 where 4 is the diagonal relation on #, (). It is
easily verified that T is a congruence on # (). For neIl,, define a congruence 0(x)
on #,(w) by
0(m)={<p(x:), p(x;)>: peP, {i,j}<= A for some Aen}.

The following lemma is a slight improvement on a result in Nation [16].

LEMMA 8.1. I1,, is isomorphic to a subinterval of Con(Z ,(w)), the congruence
lattice of F ,(w).

Proof. It is straightforward to verify that the mapping n— 0(z) v T is the desired
isomorphism of T, onto the subinterval [T, 8(1)] of Con(F(w)), where I is the
maximum element of IT,,.

THEOREM 8.2 Th(Con(# ,(w))) is hereditarily undecidable.
Proof. (Immediate from Lemma 8.1 and Corollary 3.4.)
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COROLLARY 8.3. If K is the class of congruence lattices of members of any non-
trivial variety of unary algebras then Th(K) is recursively inseparable.
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