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On the Structure of the Lattice of Equational Classes - ()

STANLEY BURRIS?)

Introduction

For a given similarity type 7, the number of atoms of .#(z) will be determined
and the possibility of embedding partition lattices into % (t) will be discussed. Our
result gives a complete solution to Problem 33 of Gritzer (see [2], page 194), and the
discussion gives some insight into the difficulties of Gritzer’s Problem 32 (the prob-
lem of characterizing .# () lattice-theoretically).

The notation used is that of Gritzer [2]. A type 7 of algebras is a sequence
{ng, ny, ..., n,,...» of non-negative integers »n,, for y<0(t), where 0(z) is an ordinal.
For every y<0(t) one has an n,-ary operation symbol f,. The set P™ (1) of n-ary
polynomial symbols of type t is defined as follows:

1.1. x,,..., X,_; are n-ary polynomial symbols;

1.2. if po,..., Pu,—1 are n-ary polynomial symbols and y<O0(z), then f,(p,,...

.++> Py, 1) i8 an n-ary polynomial symbol;

1.3. n-ary polynomial symbols are precisely those obtained from 1.1 and 1.2 in a

finite number of steps.

Define P (1)=J,<o, P™ (7). A t-identity is an expression of the form p=q
where p, qe P (7).

Let .# denote the set of all t-identities and define the operators R, © and T on
27 by:

R(£) = {xo = Xo}
S(f)={p=q:p=qef or q=pe g}
T(F)={p=q:p=re# and r=qe g for some reP® (7)}.

A set X of identities is closed provided :

2.1. R(2)<=Z;

22. S(X)<cz;

23. T(2)<=z;

24. ifp;=q;isin Zfori=0,...,n,—1, thensois
fy (pOs L] pn,,—l) =fy (‘lo, tees qu-,,—l);

2.5. if p=qisin X, and p’=q’ is derived from p=gq by replacing all occurrences of
X; by an arbitrary polynomial symbol r, then p’=q’ is in .

The smallest closed set of identities containing 2 will be denoted by [Z].

First, three well-known results will be stated without proof (see [2] and |7]).

1) Research supp_orted by NRC Grant A7256.
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THEOREM 1: The closed sets of t-identities constitute a complete lattice £ (1)
under the partial ordering: £, <X, if 2,20 X,.

THEOREM 2: Every point of £ (7) is above an atom (equationally complete set
of identities) of £ (7).

In several of the following results we require a detailed approach to constructing
[Z] from X (rather than merely assuring the existence of [X] by intersecting the closed
sets of identities which contain X). Before stating Theorem 3, we briefly introduce the
following notation to explain the syntactic approach. Su(t) will denote the set of
substitutions for the polynomials P’ (t) (more precisely, Su(z) is the set of endo-
morphisms of the absolutely free algebra of type T on the countable set of generators
X0, Xy, ...), and for re P’ (7), S7° will denote the substitution which replaces x, by r
and leaves x; fixed for i>0. Let Su*(t) be the set of substitutions which map variable
symbols to variable symbols. Also, let T=T U IT?U....

THEOREM 3: Let X be a set of 1-identities. Then

[Z]1=T(U{[p=q]:p=q€Z})

where
[p = q] = TS ({053, (x) = 6835, (r): 0 e Su™ (1), o€ Su (1), re P (1)}).

When it is appropriate to emphasize that p=qe[2] can be derived using Theorem
3, it is usual to employ the notation ZFp=q.
If 7 is a similarity type, the multiplicity type p associated with 7 is p={my,...
veey My, .o i< Where
m;=|{y:y<0(r) and n,=i}|.

I. The Atoms of £ (7).

There are two classical results on % (1) which were proved in the early fifties (see
[5] and [6]).

THEOREM 4: (Kalicki and Scott) Z ({1)) has two atoms.

THEOREM 5: (Kalicki) & ({2)) has 2™° atoms.
The remaining cases will be examined in this section.

THEOREM 6: Let t={ngy, ny, ..., n,,...) be a similarity type and p be the asso-
ciated multiplicity type. Define A(z) to be the number of atoms of £ (t). The following
table relates the similarity type t to the number of atoms A(t):
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mz:m3="‘m,’=“'=0 ‘mJ#O for some _)'?2
m; = 0 m; = 1 11191 =2
A(7) 1 2 Max (2™, 2%°) Max (2% <™, 2N0)

Proof: Since one can only form max (2% <“™, 2%) sets of t-identities then
A (t)<max (2% <*™, 2%°). The following cases will correspond to the columns of the
table.

(1) my=m,=---=0. The only equationally complete set of identities is easily seen
to be [{f,=fz:a, f<0(1)}].

(2) m;=1, my=my=---=0. One can assume without loss of generality that ny=1.
The two systems

(*) [{fo(x0) =0} v {f,=1H5:1<a, p<0(r)}] and
(**) [{fo (x0) = fo (x;)} U {f, =5 (xo): 1 <a<0(r)}]

are readily seen to be distinct atoms, and any consistent system X is con-
tained in one of these two — if X has an identity of the form fg (x,)=x, then X
is contained in (*), otherwise in (¥*).
3 m =22, my=my=---=0.
(a) To guarantee the existence of at least 2™° atoms, consider & (<1, 1)). Let
N* be the positive integers, and let 4 and B be subsets of N*. Define
2 (A, B)to be the set

{fof £5£7 (Xo) = Xo: ne A} L {fof f5fF (xo) = fof fof 7 (x,): ne B}

If AnB#0, then X(A4, B) is inconsistent since a function cannot be both
constant and the identity except on the trivial algebra.

If AnB=0, then the consistency of Z (4, B) is seen from the following
model. Define f, and f; on N* by f, (n)=2", fo(22")=3" fo (Vs 1) =P+ 2»
where m>1 and p,, is the mth prime, and f,(2""*"")=n if meA, and
fo(t)=1 otherwise. This is readily checked to be a model of X (4, B).

By considering distinct complementary pairs (4, B) and (4,, B,), one
has in Z ({1, 1)) that [2(4, B)] A[2(4,, B,)]=0, since either 4; " B#0
or AnB;#0. From Theorem 2 it follows that £ (<1, 1)) has a continuum
of atoms.2)

(b) To show that there are at least 2™ atoms, let J={y<0(t):n,=1}. For
each partition (4, B) of Jinto two sets, let

2 (A, B) ={f,(x0) =Xo:yed} U {f,(x,) =1, (x,):yeB}.

2) G. McNulty pointed out to the author that the result of paragraph (a) has also been obtained
by F. Backer and R. Thompson.
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These sets are consistent, hence one has 4 (t) >2™ by an argument similar to
that of paragraph (a). Combining (a) and (b), one has 4 (t) >max (2™, 2%°).
Finally, to prove that there are no more than max (2™, 2%°) atoms, let
J={y:n,=1} and K={y:n,=0}, and suppose that X is a consistent set
of t-identities. The basic idea is to show that

St=su{f,=f:0 peK}U{f,(f,) =1,:aeK, AeJ}

is still consistent, and hence the atoms of .# (t) must identity all polynomials
involving nullary operations. Thus there will be no more equationally
complete sets of t-identities than there are sets of identities in the unary
and variable symbols; that is, 4 () <max (2™, 2%°).

Assume that Z is a consistent set of identities. If £* Fx,=x,, then by
Theorem 3 there is a sequence of identities

Xo=PosPo=DPis-s Pae1 =P P =Xy

such that each identity is in some [p=q] where p=qeZX™. One can assume
that the sequence above is minimal, and thus none of the identities are a
consequence of X, =X,. Clearly x,=po¢[p=q] for any p=qeZ* —2. Let
Pi-1=P; be the first identity such that p,_;=p,e[p=q] for some
p=qeZX* —Z. But then p,_, does not involve a variable symbol (only unary
and nullary symbols), and XFx,=p,—;, and hence XFx,;=p,_, (by
uniform substitution), so X'} x,=x,. This contradicts the consistency of X,
and completes the proof of our theorem in case (3).

(4) m;#0 for some j>2. This will be divided into three cases.

(i)

(i)

(i)

Zi<oM; infinite, me<2;5>;m;. Then ZX,> m;=2;.,m; and one can
obviously argue by analogy with paragraph (b) to obtain the desired
conclusion.

Zi<om;<N,. Let f, be a polynomial symbol such that n,>2. One can
define a binary symbol + by x,+x, =f,(Xo, X;, Xy, ..., X;), and then
using Kalicki’s equations [5], one can extend f, arbitrarily in the Kalicki
models to show that the equations are consistent, (where all other functions
may be defined arbitrarily) and hence there are 2%° atoms — clearly
221‘ <o - 2“0.

Moe>2;> My, Me=N,. Then Z; . ,m;=m,. To get 2™ distinct atoms in
% (), for each partition (4, B) of {y:n,=0} put

Z(4,B)={f,+ xo =xq:7€A} U {f, + X, =f, + X, :y€B},

where ¢+ is defined using f, as in (ii). Clearly, each set X (4, B) is con-
sistent. Hence the result follows immediately.
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II. Embedding the Duals of Partition Lattices in .% (7).
As before, u will be the multiplicity type associated with z.

THEOREM 7: £ ({1, 1)) contains the dual of the partition lattice of a countable
set as a complete sublattice.
Proof: Let I1,, denote the partition lattice of N *. To each nell,, associate a set of
laws:
2 (n) = {fofif, (xo) = fof 'fy (Xo): m,neA forsome Aen}.

The only laws which can be derived from X () are of one of the following four forms:

() 556 .. £ fen (x,) = 568 . £ 5 (x,) 3
(i) £E248 .. £2n-3f5m =261 (x,) = £ E68 ...f{" Sgn-2fin1 (x,)
(i) £03050 . £ hn 1 (x,) = FPAf0 L £3n =262 (x,) ;
(iv) EPEE5 . Einm3fn it (x,) = P56 . £33 (x,)

where §,,, t,, arein the same class 4 of m, fork=1, 2, 3,....

Consequently, if #, # 75, then [ 2 (n,)] # [2 (=,)]. Furthermore, if {r,};.; is an in-
dexed subfamily of IT,,, then it is quite direct to verify that \/ ;. [Z(7;)]=[2 (A ;cm:)]
and A [Z(m)]=[2(Vier mi)]-

THEOREM 8: #({2)) contains the dual of Il , as a complete sublattice.

Proof: Let f, be the single binary operation symbol, and define q, to be the poly-
nomial f, (X, X,). Then recursively define g, to be the polynomial f,(x,, g,), and
put p,=f, (qm fo (%o, XO))°

The components of a polynomial p (see [2]) in P ({2)) form a connected dyadic
tree T, under the relation ‘is a component of’. Let the property /4 of polynomials p
in P ({2)) be: T, has a connected subtree of the form shown in Figure 1.

Figure 1.
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Note that no p, has s, whereas any substitution into p, which replaces x, by a non-
variable yields a polynomial with 4, and any substitution of p, into a non-variable
polynomial results in a polynomial with /.

Let ¥ be the set of identities {p=q:p and q have s} U4, where

A={p=p: peP ({2))}.

It is readily seen that ¥ is closed. For any n in IT,,, define = () to be the set of identi-
ties {P,(X,)=Pn(X,):n, me A for some Aen, m#n, and v<w}; put X(n)=Z(n)u V.
Since Z(n)n ¥ =0, it follows that m; #7, implies X (n,)# X (n,). Using the prop-
erty /2 and the discussion in the previous paragraph it easily follows hat X (r) is
closed; furthermore the X (n) exhaust the subinterval (Z(n,)uU ¥, ¥), where 7, is
the supremum of I1,. Hence (X(mo)u ¥, ¥) is isomorphic to the dual of IT,,.

THEOREM 9: If my is infinite, then £ (t) contains a copy of the dual of II,,, as
a complete sublattice.

Proof: One merely partitions the nullary functions and proceeds in an obvious
manner.

In summary, let T be an arbitrary type — if m,; >2, then £ (7) contains a copy of
& (<1, 1)) as a complete sublattice, and if m;#0 for some j>2, then % (t) contains
a copy of #({2)) as a complete sublattice. Hence one has the following result.

COROLLARY: If my=R, or m; =2 or m;=>1 for some j=>2, then £ (7) contains
the dual of 11, as a complete sublattice.

In [3] E. Jacobs and R. Schwabauer proved that the lattice £ ({1)) of equational
classes of mono-unary algebras is a distributive lattice, and in [4] J. Jezek showed
that £ (<0)), £ (<0, 0>) and £ (<0, 1)) were also distributive — however, the fact
that % (z) satisfies any special lattice laws is quite exceptional.

THEOREM 10: If mo =N, or my =2 or m;>1 for some j=2, then & (t) does not
satisfy any special lattice identities.

Proof: From D. Sachs [8] it is known that IT, does not satisfy any special lattice
laws.
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