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Iterated discriminator varieties have undecidable theories

STANLEY BURRIS

One of the landmarks in the study of decidable varieties is Werner’s proof that
finitely generated discriminator varieties (with a finite language) have a decidable
theory. However, little is known about discriminator varieties which are not
finitely generated except that some have decidable theories, and some fairly
innocent looking ones have undecidable theories. The most important example of
the latter situation is the variety CA,; of monadic algebras, analyzed by Rubin [4].

In this paper we give a fairly wide class of discriminator varieties with
undecidable theories. The basic definitions and terminology follow Burris and
Sankappanavar [1].

Let BA be the class of Boolean algebras, with 2 the two-element Boolean
algebra. For B a Boolean algebra let B* be the associated Boolean space. For A
any algebra and B a Boolean algebra let A[BJ* be the bounded Boolean power
(whose universe is the set of continuous functions from B* to A). Pg(A) denotes
the class of all bounded Boolean powers of A.

Let K be a class of algebras, and let £(x, y, u, v) be a formula in the language
of K. (x,y, u,v) is said to be an encoding formula for K if it is a primitive
positive formula which is equivalent, modulo K, to the formula x=~y — u=v.
(Encoding formulas were introduced in [2]). An expansion K’ of a class K is a
coding expansion if there is an encoding formula for K'.

For K a class of algebra, I'*(K) is the class of Boolean products of K.
AEbpn . A, means A is a Boolean product of the A, ’s.

THEOREM. Let A be a nontrivial algebra with an encoding formula. Then,
for any coding expansion Pg(A)' of Pg(A), the theory of I'*(Pg(A)’) is hereditarily
undecidable.

Proof. To show that the theory of I'*(Pg(A)’) is hereditarily undecidable we
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will semantically embed CA, into it. For B a Boolean algebra let B¢ be the
expansion of B by the unary function ¢ where c(0)=0, c¢(b)=1 for b#0. From
Comer [3] we know that any monadic algebra is isomorphic to a Boolean product
of B’s.

So let M=(M, v, A,’, 0, 1, c) be a monadic algebra; without loss of generality
suppose M=y, [l,cx (2[B,]*)°. For xe X let C,=(A[B.]*)’, an expansion of
A[B, J* which is in Pz(A). For fe[l,cxCy, and ac A let pfe[l,.x 2[B,J* be
defined by p!(x)7'(1) = f(x)"*(a). Now let C<[],., C, be given by

c={fe Il C.:nfe M for all aeA}.

xeX

We want to show that C is a subuniverse of [[,.x C,, that indeed C is a Boolean
product of the C,’s, and finally that M can be semantically embedded in C.
An easy calculation shows that for s,, s,€[[,cx 2[B,]* and x € X we have

(s1A82)(x) 71 (1) = [51(x) " (D)]N[s55(x)"1(1)]
(51vs2)(x) (1) = [s:(x) " (1) ]U [s5(x) "2 (1)].

This will be quite useful in the proof.
LEMMA 1. If fe C then |J {Range f(x):x e X} is finite.

Proof. For a given x € X we know Range f(x) is finite as f(x) e A[B, J*. So let
Range f(x) ={ay, ..., a,}. Then

[l v vl 1)) =[ph,)TD]IU - - - U[rf ()7(1)]
=f(x)"Ha)U- - -Uf(x)(a,)
=Bt’

so [uh, v -vul I(x)=1. As the pf e M it follows that for some clopen neigh-
borhood N of x we have [puf v---vuf J(y)=1 for ye N. Thus Range f(y)<
{ai,...,a,} for yeN. By compactness we see that |J{Range f(x):xe X} is
finite. O

In the following R(f) will mean |J {Range f(x):x € X}.

LEMMA 2. C is a subuniverse of [[,.x C,.
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Proof. Let F be an n-ary function symbol in the language of Pg(A)’, and let

fl’---sfnec‘
Then, for ae A, xe X,

phEGe - 8(x) 1) = [F(fy, . . ., f)(x)] (@)
= F(fy(x), ..., f.(x))""(a)

= U _ f1(x)_l(a1) n--- nfn(x)_l(an)

F(ay, ..., a,)

Fhet= OV phaeoapk,
F(ay,..., a,)=a
a; eR(f;)

so uE¢----f0e M. This proves F(f,, ..., f.)eC (as it is clearly in [[,cx C,). O

Let C be the subalgebra of [[..x C, with universe C.

LEMMA 3. C is a subdirect product of the C.’s.

Proof. Given x,€X and ceC,, let Range c={a,,...,a,}, and let N;=
¢ Ya;), 1=i=n. As M is a subdirect product of the algebras (2[B,]*) it follows
that we can find m;eM such that m;(x)™(1)=N, 1=<i=<n. Then
my(xp) v+ * - vm,(xo) =1, mj(xo) Am;(x,) =0 if i# j. As M is a Boolean product we
can use the patchwork property to show that we can also assume the m;’s above
satisfy m,v -+ -vm, =1, m;Am; =0 for i# j. Now construct fe[],cx C, by letting
f(x) Ya;))=mi(x)"'(1) for xeX, 1=<i=<n. Then wl=m, and pf=0 for
aé¢ia,,...,a,}. Thus fe C, and f(x,) = ¢, so indeed C is a subdirect product of the
C,s. O

LEMMA 4. Equalizers are clopen in C.
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Proof. Let f, g e C. Then, with A,=R(f) UR(g),

[f=gl={xe X:f(x) = g(x)}
={xeX:f(x)""(a)=g(x) '(a) for ac Ay}

= N {xeX:pl) (1) =pi) M)}

aefA,

= [uh=nil

acf,

a clopen subset of X. [

LEMMA 5. C has the patchwork property.

Proof. Let f, g€ C and let N be a clopen subset of X. Let h=f | yUg | x_n-
Then we have, for ac€ A, xe X,

W wf(x) if xeN
f“'a(x) = 2 .
pi(x) if xgN,
i.e, po=ph I NURE | x N As M has the patchwork property we see that u"e M
foraeA,so heC. O
Combining Lemmas 3-5 we have proved

LEMMA 6. C=<,,[I..x C..

Now we turn to our main objective, namely to show that CA, can be
semantically embedded in Pg(A)'. Choose an encoding formula &(x, y, u, v) for A
and let Me CA,, with C as above. Define a relation <* on C? by

(f,g)="(h, k) iff CFe(f, g h, k).

LEMMA 7. For f,geC, (f,g)<*(h,k) holds iff for all xe X we have
[f(x)=g(x)]<=[h(x) = k(x)].

Proof. Note that Cl&(f, g h k) iff for all xeX we have C,IF
e(f(x), g(x), h(x), k(x)) as & is primitive positive. Also, since £ is an encoding
formula C, Fe(f(x), g(x), h(x), k(x)) iff [f(x) = g(x)]< [h(x) = k(x)].

Now define the relation ~ on C? by (f,g)~(h, k) iff (f, g)<*(h, k) and
(h, k)=<*{f, g). Then clearly the following holds.
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LEMMA 8. ~ is the equivalence relation on C* given by (f, g)~ (h, k) iff for
all xe X, [f(x) = g(x)]=[h(x) = k(x)].

Let B = C?/~, and let =< be the partial ordering induced by =* on C?~,ie.,
(f, &)~ =(h, k)|~ ift (f, g)=<™(h, k).

Let <,, be the usual partial order on M, i.e., m,; <p;m, iff m;vm,=m,. Our
immediate objective is to show (B, =)=(M, =,,). To this end let us define for
f, g€ C the element my, €[l.cx 2[B.J* by m; (x)7'(1) =[f(x) = g(x)].

LEMMA 9. m,eM for f,ge C.

Proof. Let Ay=R(f)UR(g). Then, for xe X,

me (x)7'(1) = U [f(x)=a]N[g(x)=a]

aeAp

U [fx)(@)]N[gx)"(a)]

acAy

= U wpix) ') Npix)71()

acAp

[( v winus)o] o,

acAp
as A, is finite. Thus

Mse = V P«ﬁf‘\ui;

acA,

hence m,e M. [
Let B:C?>— M be the map B({f, g)) = my,.

LEMMA 10. ker g = ~.

Proof. We have B(f,g)=B(h,k)) iff m,=m,, iff for all xeX
my o (x)71(1) = my,, (x)71(1) iff for all xe X, [f(x) = g(x)]=[h(x) = k(x)] iff (f, g)~
(h,k). O

Thus we can define a map a:B — M by a({f, g)/~)=ms,.

LEMMA 11. « is an embedding of (B, <) into (M, <p,).
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Proof. From the previous lemma it is clear that « is 1—1. Also

(f, e)~=(h k)~ iff (f,g)=*(h, k)
iff [f(x)=gx)clh(x)=k(x)] for xeX
iff me (x)7'(1)sm,(x)"'(1) for xeX

iff My, =My . O
LEMMA 12. « is an isomorphism from (B, <) to (M, <,,).

Proof. We only need to show a is onto. So let m € M, and choose a,, a,€ A,
a; # a,. Choose f to be the element of [[,.x C, which satisfies f(x) (a,) = B¥ for
x € X. Clearly fe C. Then choose the g €[], .x C, which satisfies (i) R(g) = {a,, a,},
and (i) g(x)™"(a;) =m(x)7'(1) for xe X. As uf =m, u% =m’, and u&=0 other-
wise, it is clear that ge C. Now, for x € X,

mye (x)7(1) =[f(x) = g(x)]
= g(x)"(ay)
=m(x)7(1),

so m;, = m. Thus a(({f, g)/~)=m, so a is onto. [

Let M, be the set of closed elements of M, i.e., My={m € M:c(m)=m}, and
let Bo = C!_l(Mo).

LEMMA 13. For me M, m e M, iff m(x)"'(1) e{¢, B¥} for xe X.

Proof. me M, iff c¢(m)=m. This holds iff c(m(x))=m(x) for xe X. Thus
meM,o m(x)"'(1)e{d,B*}, for xe X. O

Our final objective is to show that there is a formula Ay(u, v) such that
CEA(f, g) iff (f, g)/~ € B,. To this end choose an encoding formula &(x, y, u, v)
for Pg(A)’, and define the relation <, on C? by

(f’ g) Eﬂ(h’ k) lff C |=80(f) g, h! k)-

LEMMA 14. For (f, g)eC, (f, g)/~ € B, iff [f(x) = g(x)]e{¢, B¥} for xe X.
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Proof.

(f,g)l~€By ifft my, €M,
lﬁ mf,g (x)_l(l) € {¢, Bt}
iff [f(x)=gx)]e{s, B}

LEMMA 15. For f, ge C we have

(f, g)=o(h, k) iff [f=glslh=k]
Proof. Simply observe that (since ¢, is an encoding formula)

(f, g)=o(h, k) ifft CFe(f, g h, k)
iff CEe(f(x), g(x), h(x), k(x)) for xeX
iff f(x)=g(x)—h(x)=k(x) for xeX
iff [f=glclh=k]. O

Thus we have =* < <,. The opposite containment will be used to construct a
formula which defines B~ *(B,).

LEMMA 16. For f,geC

f,g))~€By iff (f,g)=o(h,k)=>(f,g)="(h k)
for (h, k)e C>

Proof. (=) Let {f, g)/~ € B,. Then c(m,,) = m,,, so for all xe X, m; (x)"'(1) e
{¢é, B¥}. Thus [f(x)=g(x)le{s, B%} for xe X. If {f, g)=<o(h, k) then, for xe X,
f(x) = g(x) implies h(x) = k(x). Hence f(x)= g(x) certainly implies [f(x) = g(x)]<
[h(x)=k(x)] (as both=B¥); and f(x)#g(x) also yields [f(x)=g(x)ls
[h(x)=k(x)] as [f(x)=gx)]=<. Thus (f,g)=<c(h, k) implies [f(x)=g(x)]l<
[h(x)=k(x)] for all xeX, i.e., {f, g)="(h, k).
(&) Suppose (f, g)=<o(h, k) > (f, g)=*(h, k) for h,keC. Let h, ke C be such
that m,, =c(m},). Then, for xeX, my, (x)"'(1)=Q iff mg(x)"'#B%, so
[h(x)=k(x)]=2 iff [f(x)=gx)]#B% ie., iff f(x)#g(x). Thus we have
{f, g)=o(h, k) since f(x)=g(x) implies [h(x)=k(x)]=B% for xe€X. Then from
(f,g)=*(h,k) we see that for any x€X with f(x)#g(x) we must have
[f(x)=gx)l<[h(x)=k(x)]= O, so indeed (f, g)/~€B,. U]
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As a:(B, By, =)— (M, M,,, =<,,) is an isomorphism we have proved that the
formulas

A(x,y):x=x
Ao(x, y):Vu VYo[eo(x, y, u, v) = e(x, y, u, v)]
p(x, y, u,v):e(x,y, u, v)

suffice to semantically embed CA, into Pg(A)'. This proves the theorem.

Actually our theorem generalizes the case of monadic algebras as the two-
element Boolean algebra has the required formula £(x, y, u, v) given by (x4y)v
(uAv)' =1, where A is symmetric difference, and since (BA)¢ is a coding expan-
sion of BA-namely let gy(x, y, u, v) be c(udv)=c(xAy).

A discriminator expansion K' of a class K is an expansion for which there is a
discriminator term for K'. Perhaps the simplest discriminator expansion of a class
K is obtained by adding a discriminator function t to each member of K —the
resulting class is denoted by K'. From a discriminator term t(x, y, z) we construct
the encoding formula t(x, y, u) =t(x, y, v). Thus for A a nontrivial finite algebra,
(Pg(A'"))" has a hereditarily undecidable theory, where t,, t, denote expansions by
discriminator functions. If V, is a discriminator variety then V(V}) is called an
iterated discriminator variety. Clearly we have the following.

COROLLARY. Nontrivial iterated discriminator varieties have hereditarily
undecidable theories.
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