Free algebras as subdirect products

STANLEY BURRIS

Free algebras as subdirect products

If \mathcal{X} is a class of algebras (of a given type) let $F_{\mathcal{X}}(X)$ be the free algebra which is freely generated by X in the variety generated by \mathcal{X} . A well-known result of Birkhoff says that $F_{\mathcal{X}}(X)$ can be realized as a subalgebra of a product of algebras from \mathcal{X} , i.e. $F_{\mathcal{X}}(X) \in \mathbf{ISP}(\mathcal{X})$. For X sufficiently large we can sharpen this as follows.

THEOREM. Given a class \mathcal{H} of algebras there is a cardinal m such that if $|X| \ge m$ then $F_{\mathcal{H}}(X)$ can be realized as a subdirect product of algebras from \mathcal{H} , i.e. $F_{\mathcal{H}}(X) \in \mathbf{IP}_{s}(\mathcal{H})$.

Proof. First let \mathcal{H}^{\star} be a set of algebras from \mathcal{H} which generates the same variety as \mathcal{H} , and let m be an infinite upper bound on the size of members of \mathcal{H}^{\star} . For X such that $|X| \ge m$ we claim that $F_{\mathcal{H}}(X)$ is in $\mathbf{IP}_s(\mathcal{H}^{\star})$. Indeed if $a, b \in F_{\mathcal{H}}(X)$ and $a \ne b$ then there is a homomorphism $\phi: F_{\mathcal{H}}(X) \to A$ for some $A \in \mathcal{H}^{\star}$ such that $\phi(a) \ne \phi(b)$. As there is a finite $X_1 \subseteq X$ such that a, b both belong to the subalgebra generated by X_1 , and as $|X| \ge m$, we can easily modify ϕ to make it onto, completing the proof.

COROLLARY (Kogalovskii (see [1], p. 153)). For all \mathcal{K} , $\mathbf{HSP}(\mathcal{K}) = \mathbf{HP}_{\bullet}(\mathcal{K})$.

Proof: Clearly $\mathbf{HSP}(\mathcal{H}) = \mathbf{H}(\{F_{\mathcal{H}}(X): |X| \ge m\})$, for m as in the Theorem. Thus $\mathbf{HSP}(\mathcal{H}) \subseteq \mathbf{HP}_s(\mathcal{H})$, so $\mathbf{HSP}(\mathcal{H}) = \mathbf{HP}_s(\mathcal{H})$.

Acknowledgement

The Theorem was inspired by some recent work of J. Lawrence on regular rings [2].

Research supported by NRC Grant No. A7256

Presented by G. Grätzer. Received October 10, 1978. Accepted for publication in final form December 5, 1978.

REFERENCES

- [1] G. GRÄTZER, Universal Algebra. Van Nostrand, 1968.
- [2] J. LAWRENCE, Some applications of universal algebra to the study of von Neumann regular rings. (Unpublished)

University of Waterloo Waterloo, Ontario Canada