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Free algebras as subdirect products

STANLEY BURRIS

Free algebras as subdirect products

If % is a class of algebras (of a given type) let F,(X) be the free algebra which
is freely generated by X in the variety generated by %. A well-known result of
Birkhoff says that F,(X) can be realized as a subalgebra of a product of algebras
from ¥, ie. F,(X)eISP(%). For X sufficiently large we can sharpen this as
follows.

THEOREM. Given a class ¥ of algebras there is a cardinal m such that if
|X|=m then F,(X) can be realized as a subdirect product of algebras from ¥, i.e.
Fol( X) e IP(%).

Proof. First let ¥™* be a set of algebras from ¥ which generates the same
variety as ¥, and let m be an infinite upper bound on the size of members of ¥™*.
For X such that |X|=m we claim that F,(X) is in IP,(%™). Indeed if a, b € F,(X)
and a# b then there is a homomorphism ¢ : F,,(X) — A for some A € %™ such
that ¢(a)# ¢(b). As there is a finite X, < X such that a, b both belong to the
subalgebra generated by X, and as |X|=m, we can easily modify ¢ to make it
onto, completing the proof.

COROLLARY (Kogalovskii (see [1], p. 153)). For all %, HSP(%) = HP, (%).
Proof: Clearly HSP(%) = H({Fy(X):|X|=m}), for m as in the Theorem. Thus
HSP(3) c HP, (%), so HSP(¥) =HP,(%).
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