Mailbox

An example concerning definable principal congruences

STANLEY BURRIS

In [1] Baldwin and Berman ask if a variety generated by a finite algebra $\mathfrak A$ has definable principal congruences, i.e. is there a first-order formula $\Phi(x, y, u, v)$ such that for any $\mathfrak B \in \mathcal V(\mathfrak A)$ and a, b, c, d in $\mathfrak B$ we have $\langle c, d \rangle \in \theta(a, b)$ iff $\mathfrak B \models \Phi(a, b, c, d)$. In the following we describe a four-element algebra $\mathfrak A$ such that $\mathcal V(\mathfrak A)$ has distributive congruence lattices and does not have definable principal congruences.

Let $\mathfrak{A} = \langle A, +, t \rangle$ where $A = \{0, 1, 2, 3\}$ and the operations are given by

$$x + y = \begin{cases} 3 & \text{if } \langle x, y \rangle = \langle 2, 1 \rangle \\ x & \text{if } \langle x, y \rangle \neq \langle 2, 1 \rangle \end{cases}$$

and

$$t(x, x, y) = t(x, y, x) = t(y, x, x) = x,$$

 $t(x, y, z) = 0$ otherwise.

Let \mathfrak{A}_0 be the subalgebra $\langle \{0, 2, 3\}, +, t \rangle$ of \mathfrak{A} . Note that $\langle 0, 3 \rangle \notin \theta_{\mathfrak{A}_0}(0, 2)$, whereas $\langle 0, 3 \rangle \in \theta_{\mathfrak{A}}(0, 2)$.

Next, for $n \ge 1$ $(n = \{0, 1, ..., n-1\})$, define $\mathfrak{A}_n = \langle A_n, +, t \rangle$ to be the subdirect product of \mathfrak{A} with universe

$$A_n = \{0, 2, 3\}^n \cup \{h_i : 0 \le i \le n - 1\},\$$

where

$$h_i(j) = \begin{cases} 0 & \text{if} & i \neq j \\ 1 & \text{if} & i = j \end{cases}.$$

Presented by G. Grätzer. Received December 16, 1974. Accepted for publication in final form September 30, 1976.

404 S. BURRIS

Let 0, 2, and 3 be those constant functions in A_n whose values are 0, 2, and 3 respectively. Since $(\cdots (0+h_0)+\cdots +h_{n-1})=0$ and $(\cdots (2+h_0)+\cdots +h_{n-1})=3$ it follows that $(0,3)\in \theta_{\mathfrak{A}_n}(0,2)$. From our previous observation on \mathfrak{A}_0 and the fact that only the h_i 's can assume the value 1 we see that to derive $(0,3)\in \theta_{\mathfrak{A}_n}(0,2)$ using the usual Mal'cev sequences of algebraic functions we are forced to incorporate all the h_i 's as parameters in the algebraic functions. Now letting \mathfrak{A} be a non-principal ultrafilter on the natural numbers N the last observation implies $(0,3)\notin \theta_{\mathfrak{A}_n}(0,2)$ where $\mathfrak{A}_\infty=\prod_{n\in N}\mathfrak{A}_n/\mathfrak{A}$; hence principal congruences are not definable in $\mathcal{V}(\mathfrak{A})$.

Remark. Recently McKenzie [2] has proved (February, 1976) that every non-distributive variety of lattices does not have definable principal congruences. However the following is still open.

PROBLEM. Is there an example of a variety $\mathcal{V}(\mathfrak{A})$ where \mathfrak{A} is a finite algebra and $\mathcal{V}(\mathfrak{A})$ has permutable congruences but $\mathcal{V}(\mathfrak{A})$ does not have definable principal congruences?

REFERENCES

- [1] JOHN T. BALDWIN and JOEL BERMAN, The number of subdirectly irreducible algebras in a variety. Alg. Univ. 5 (1975), 379-389.
- [2] RALPH McKenzie, Para primal varieties: a study of finite axiomatizability and definable principal congruences in locally finite varieties. Preprint.

University of Waterloo Waterloo, Ontario Canada