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0. Introduction

This paper is an addition to the many investigations which have been made into
the structure of lattices of equational theories. (For an excellent survey of recent work
in equational logic we refer the reader to A. Tarski [12].) As an introduction to this
paper we would like to mention a few results which have influenced the curiosity and
work of the authors. In [7] E. Jacobs and R. Schwabauer gave a description of the
lattice of equational classes of mono-unary algebras; however, much of the recent
progress has been made in the study of equational classes of semigroups. J. A. Gerhard
has presented in [5] a detailed (and deep) analysis of equational classes of idempotent
semigroups. P. Perkins [10] proved that every equational theory of commutative
semigroups is finitely based (hence the lattice of equational classes of commutative
semigroups is countable). In [4], the authors showed that this lattice does not satisfy
any special lattice identities. The next logical step would be to study the uniformly
periodic semigroups (i.e. those satisfying an identity of the form x™ =x™*"); our main
result shows that the structure of the lattice of equational classes of semigroups
satisfying x* = x? is considerably more complex than in the idempotent case — namely,
the equation x =x? leads to a countable distributive lattice of width three, whereas the
lattice for x? =x> contains a subinterval isomorphic to the dual of the partition lattice
of a denumerable set. (Similar results were obtained in considerably simpler cases by
S. Burris [3].) It should be pointed out that K. Baker [1] and R. McKenzie [9] have
published a related result — namey they have embedded the lattice of subsets of a
denumerable set onto a subinterval of the lattice of equational theories of lattices.

1. Preliminaries

Let & (X) be the free semigroup on the countable set
X ={x;|i>0},

and let F(X)* be F(X) with a unit, A, adjoined. A semigroup equation (henceforth
referred to simply as an equation) is a pair of elements of ¥ (X). Let E be the set of all
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endomorphisms of F(X), E* the set of those mappings in E which, when restricted
to X, are one-to-one and onto X. An equation (p, ¢q) is obtained from an equation
(r, s) by substitution if there exists o€ E such that p=a(r), g=0(s). (p, q) is obtained
from (r, s) by multiplication if there exist ¢,, t,eF(X)* such that p=t,rt,, g=t;st,. A
set of equations is closed if it is a fully invariant congruence relation on & (X), that is,
if it is reflexive, symmetric, and transitive, and closed under substitution and multi-
plication. For a set X~ of equations we will write I'Z for the closure of 2.

We will give an embedding of IT , (the lattice of partitions of the natural numbers)
into the lattice of closed sets of equations containing the equation (x3, x3). The follow-
ing theorem, which may be found in [8], will be needed.

THEOREM 1. If X is a symmetric set of equations, then (p, q)eI'Z iff there exist
Fiyeeey Frs Uggeeey Up_15 Uyyeeey Ugp—gq in g(X), S1seees Sp—1> tl,..., tk—l in 8(X)*, and
O1s...» Ox—1 in E such that

ro=p, =g, r; =50;(u;) t;, risq =50;(v;)t; and (u;, v;)e,

for 1<i<k—1; or p=q.
2. Asymmetric Sequences and a Special Class of Polynomials

In [13] A. Tue constructs a countable sequence consisting of the numbers 1, 2,
and 3 which is asymmetric, that is, it does not contain any subsequence a;...a; ., of
the form 4.A4.3 It follows that there are countably many different elements of & (X') con-
taining only the variables x,, x;, x,, that start with x,, end with x,, and are square-free
(that is, they do not contain any subterm of the form p?). Thus we may choose, for
each ne N (where N is the set of natural numbers), p,€ & (X) such that:

(1) p, contains the variables x,, X, X,, and only these;

(2) x,p,x, is square-free;

(3) m+#n implies the length of p,, is not equal to the length of p,.

For each neN let

P, = {x, X7 PuX’%1 I ne, ny > 2}.

For an arbitrary set of equations X, let
t=Zu {(xtz;a x(:;)’ (xg’ x(z))} >

and let

2t ={((»). o)) | (»,9)eX, o€E"}.
For SSNx N, let

Zs = {(p, q) | there exist(m, n)eS with peP,, geP,}.

3) The authors are indebted to J. A. Brzozowski for this reference.
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LEMMA 1. If (p, 9)eI'{(x3, x3)} and peP,, then q€P,.

Proof. This is an easy consequence of the observation that the only subterms of
X, X9, x0x; which are of the form r¥ k>2, are contained in the two subterms
x5 and xg’.

LEMMA 2. If s, te§(X)*, o€E, peP,, and so(p)teP, then one of the following
holds:

(1) s=t=4, m=n, and 6(x;)=x; for i=0, 1, 2;

() o(x;))=x% for some k;>1, i=0,1,2, s=x,x% for some k>0, and x,x%teP,;

(3) o(x;)=x¥ for some k;>1, i=0,1,2, t=x¢x, for some k>0, and sx3x,€P,.

Proof. If pe P, then p =x,x%5°p,,xo°x, for some m,, m, >2. Thus there existny, n, >2
such that

X1 X52ppxexy = 56 (x1) 6 (%3)™ 6 (pp) 0 (x0)™ 0 (x4) 2.

The result follows from the fact that x, p,,x, and x,p,x, are square-free, and of different
lengths if m#n.

LEMMA 3. If SSNx N is reflexive, symmetric, and transitive, and if (p, g)e 2§
and peP, then (p, q)€Zs.

Proof. In view of Theorem 1 it suffices to show that the following statement holds
for all k>1:

(T): for all ry,...,Fiotyyenny Ug—q,Ug5eeey Oy A0 F(X), Sipeens Semtstiseees f—y iN
F(X)* and 0y,..., 0, in E, if
ri = SiO'i (u,-) ti’ r,-+1 = S,-O',- (Ui) ti a.nd (u,-, vi)GZ;
for 1<i<k—1, and if r; €P,, then (ry, r;)€Zs.

The proof is by induction on k. The case k=1 is trivial since S is reflexive, so
assume ( Tj_,) holds for some k>2, and that we have the r;, u;, v;, s;, ¢;, and g; as in
the hypotheses of (T;).

If (uy, v;)e{(x2, x3), (x3, x3)}, then, by Lemma 1, (ry, r,)eI'{(x3, x3)} and r, €P,
implies r,€P,. By the induction hypothesis, (r,, r,)€Zs, hence (ry, r)€Zs.

Otherwise, there exist h, m with u,€P,, v,€P, and (h, m)eS. But s,0, (u;) 1,
=r,eP, and u, eP,, thus we can apply Lemma 2. If s, =¢, =4, n=h, and o, (x;) =x;
for i=0,1,2, then r;=u,, ry=v,, thus (r,,r,)€Xs. By the induction hypothesis,
(r,, r,)€Zs. Since S'is transitive it follows that (ry, r,)eZs. If oy (x;) =x for i=0, 1, 2,
s, =x,x} for some j>0, and x,x5t, €P,, then r,=s,0, (v;) t,€P,. Applying the induc-
tion hypothesis, (r,, r,)€Zs, and thus (r,, r,)€Zs. Similarly, if o, (x;) =x} for i=0, 1, 2,
t, =x}x, for some j>0 and s,xox,€P,, then (ry,r,)eZs. This completes the proof.

COROLLARY. If SSNxN is reflexive, transitive, and symmetric, and if
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(p, q)eI'Zs andp=o(p’) for p'€P,, s E*, then there exists q' such that g=o(q’) and

(pl’ q’)EZS'
. R=N x N —{(n,n)| neN}

and let T=FZ,’JXN—Z§.

LEMMA 4. T is closed.

Proof. If T is not closed, then there exist € E*, peP,, geP,, m#n, with (o (p),
0(q))eI'T. But then (p, g)eI'T. T is clearly reflexive and symmetric, and, by
Lemma 3, is also transitive. Thus it is enough to show that if (p, ¢)eT and if
so (p) teP,, then so (q) teP,.

Let s, te§ (X)*, o€E be arbitrary, but fixed for the rest of this proof. Again by
Theorem 1, it is enough to prove that the following statement holds for all k>1:

(Sx): For all ry, .., Fythyyenny UgogsVgyeees Up—q A0 F(X), S1peees Skets biseees ly—y iD
F(X)*, o4,..., 04—, in E, if
ri =50 () tiy 1iv g = 50;(0) t; and  (uy, v;)€ZNxy
for 1<i<k—1 and if (ry, r,)eT and if so (r,) t€P,, then so (r;) teP,,.

The proof is by induction on k. The case k=1 is trivial, so assume (.Sy ;) holds for
some k>2. If we are given the r;, s;, t;, u;, v;, and o; as in the hypotheses of (S,),
then we consider two cases.

Case 1. (uy, v,)e{(x, x3), (x3, x3)}. Then

(s0 (5101 (uq) 1) t, 50 (5104 (vy) t;) t) €T {(x3 x3)} -

Since so(sy04(u1)t,) t=s0(r,)teP, it follows by Lemma 1 that so(r,)t=
50 (5164 (v1) t,) teP,. Moreover, (ry, r,)eI {(x3, x3)} =T, and thus, since T is transi-
tive, (r,, r,)€T. By the induction hypothesis, sa (r;) t€P,,.

Case 2. (uy,v1)€Zyxy. Then u,;eP;, v,eP, for some j, h. Since so (s,) 60, (u;) X
x o (t,) teP,, we can apply Lemma 2.

If oo, (x;)=x;for i=0, 1, 2, s=s, =¢t, =t=Aand m=j, then 6, maps x,, x;, and x,
one-to-one into X, and r, =g, (1;). But then, since (o, (u;), ,)€T, by the corollary
to Lemma 3 it follows that there exists an r such that o, (r)=r, and (uy, r)€Zyx -
Since (o, (1), o1 (r))€T it follows that reP,. But then so () t=00,(r)=reP,.

If 60, (x;)=x% fori=0, 1,2, and so (s, ) =x,x} forsome a>0 and x,x35(¢,) teP,,
then so (r,) t=so(s,) oo, (v;) 6 (t,) teP,, and the result follows by the induction
hypothesis. Similarly the result follows in the case oo, (x;)=xg for i=0, 1, 2,
o(ty) t=x4x, for some a>0, and so (s;) xox;€P,. This completes the proof.
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LEMMA 5. If SSN XN is an equivalence relation on N, then TuZs is closed.

Proof. If (p,q)€Zs, s, teF(X)*, and o€k, then if s=t=1 and ceE", then
(so () 1,50 (q) )€ Zs ; otherwise we have (so (p) 1, so(¢) t)€T. Thus Tu Zy is closed
under multiplication and substitution. Tu Z§ is clearly reflexive, transitive, and sym-
metric — and this completes the proof.

3. The Embedding

Let .# be the lattice of closed sets of equations, and Z}, the lattice of equivalence
relations on N (where, in both cases, the partial ordering is set-theoretical contain-
ment). Let A and v denote the meet, respectively join, in the two lattices.

Define the mapping 6 from Zinto £ by 6(S)=Tu Zs. If S and S’ are equivalence
relations on N, then

0(SAS)=TuUZss=Tu(Zs5nZs)=(TUuZs)Nn(TUuZs)=0(S)A0(S).
Also
0(S)vO(S)=r(Tulsuls)csT(Tuls,s)=TuZs,s=0(SVvS).

On the other hand, Zs, s is contained in the transitive closure of 25U Zg, hence in
I'(ZsuZs). But then TUZs, s I (TUZ§UZg), hence O(SvS)<O(S)vO(S).
Thus 6 is a lattice homomorphism.

If X is a closed subset of semigroup equations with TSZ =T U X5y, then one can
easily verify that =T u Zg for some equivalence relation S on N. Hence the TuU 3§
exhaust the subinterval [T, TUZ5.y] of Z.

Furthermore, if S#S’, then Z§ # Xy, and consequently 6(S)##60(S’). Thus 6 is an
embedding of £ onto a subinterval of %. Since (x5, x3)€0(S) for Se &y, and
since £ is isomorphic to IT , (the lattice of partitions of N) and # is dually isomorphic
to the lattice of equational classes of semigroups, we have the following theorem.

THEOREM 2. The lattice of equational classes of semigroups satisfying x*> =x> con-
tains a subinterval isomorphic to the dual of 11 ,,.

COROLLARY. The lattice of equational classes of semigroups satisfying x* =x>
does not satisfy any special lattice laws.
Proof. D. Sachs [11] proved II, does not satisfy any special lattice laws.
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