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Discriminator polynomials and arithmetical varieties

STANLEY BURRIS

A finite simple algebra in an arithmetical variety is functionally complete, and
thus there is a polynomial which defines the ternary discriminator on it (see
Werner [6], [7]). For locally finite semisimple arithmetical varieties, certain terms
exist which provide discriminator polynomials (in a uniform manner) for all the
finitely generated simple algebras in the variety. This leads to a new proof of a
result of Pixley characterizing finitely generated discriminator varieties.

We follow the notation of [2]. If V is a variety, Vg denotes the class of simple
algebras in V. An algebra is hereditarily simple if every subalgebra is simple. For
A an algebra, a polynomial t(x, y, z, ay, . . ., @,) is a discriminator polynomial for
A if A satisfies

[x=y—>tkxy,2a,...,a)=~z]&[x#*y—=>tx,y,2a4...,a,)=x]

THEOREM 1. Let V be a locally finite semisimple arithmetical variety. Then
for each n<w there is a term t,(X,y,2, uy,...,u,) such that for Se Vg and
{s1,...,8.} a set of generators for S the polynomial t,(x,y,z,5,...,8,) is a
discriminator polynomial for S.

Proof. From Foster-Pixley [4] we know that each finite member of V is
isomorphic to a direct product of simple algebras. Thus the congruence lattice of
each finite member is a Boolean lattice. Consider the free algebra
FAX, ¥, Z, iy, . .., 4,). Let 8% be the complement of 6(X,y) in the interval
[4,6(%,¥,2)]. Then (zZ, x)e6(X,y)v6*, so we can choose a term
t.(x,y, 2z, Uy, ..., u,) such that

26(f$ y)‘n(x_! )_"! z! ul! *ey an)e*i-
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Let S € Vg be generated by n-elements s, ..., s,. Then for a, b, c€ S consider the
homomorphism «:Fy(X, 9, Z, iy, ..., 4,) —S defined by a(x)=a, a(y)=b>h,
a(2)=c¢, a(i)=s, 1=i=n. If a=b then (X y)ekera, so
(Z,t,(X, ¥, Z, Uy, ..., U,))ekera. Thus a=>b implies t,(a,b,c, sq,...,s,)=c. If
a# b then (X, y) ¢ ker a. Since ker a is a maximal congruence this implies (X, y) v
ker a =V; hence ker « = Avker a =[0(%, §) A 0*]vker a = 0 vker a (use the dis-
tributive law). This leads to 8* cker «, so {t,(X, ¥, Z, éiy, . . ., ii,), X) € ker a. Thus
a¥ b implies t,(a,b,c, s,,...,s,)=a. Consequently t,(x,vy,28,...,8,) is a
discriminator polynomial for S. [J '

COROLLARY 2. (Pixley [5]). Let V be an arithmetical variety generated by a
set K of finitely many finite simple algebras. Then the following are equivalent:
(A) V is a discriminator variety.
(B) Each member of K is hereditarily simple.

Proof. (A) = (B) is just the usual one line proof that quasiprimal algebras are
hereditarily simple (see [2]).

Suppose (B) holds. By Jonsson’s theorem V is semisimple. Choose
ts(x, y, z, Uy, Uy, us) as in Theorem 1. Then t(x, y, z) =t5(x, y, 2, X, y, z) is readily
seen to be a discriminator term for K; hence V is a discriminator variety. [

Remark. One can use essentially the same proof to show that if a variety V
has the property that for every A€V the principle congruences of A form a
sublattice of Con A which is relatively complemented distributive and permutable
then V is a discriminator variety. One uses Fy(x,y,2,...,U,...)a<. (and the
downward Lowenheim-Skolem theorem). Thus, in view of known results about
discriminator varieties, the italicized words above characterize discriminator var-
ieties. Similar characterizations have been given by Fried and Kiss [3], and Blok
and Pigozzi [1]. We are particularly fond of the above characterization of
discriminator varieties because it leads directly to the fundamental Boolean
product representation (see Chap. IV of [2]).
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