Mailbox ## A note on directly indecomposable algebras STANLEY BURRIS Given an algebra **A** and a congruence θ of **A** let θ be the subalgebra of $\mathbf{A} \times \mathbf{A}$ with universe θ . The results in this note depend on the following simple observation: if **A** belongs to a congruence distributive variety then the congruences of θ are just the restrictions to θ of the congruences $\theta_1 \times \theta_2$ of $\mathbf{A} \times \mathbf{A}$. THEOREM 1. If V is a congruence distributive variety such that every directly indecomposable member is subdirectly irreducible then V is semi-simple. *Proof.* Suppose **A** is a subdirectly irreducible non-simple member of V. Let θ be the unique atom of Con **A**. Then θ is directly indecomposable but it is not subdirectly irreducible. \square COROLLARY 2. A congruence distributive variety is Boolean representable (see Clark and Krauss [1]) iff it is a discriminator variety. *Proof.* If a congruence distributive variety is Boolean representable then it must be semi-simple by Theorem 1. The rest is in [1]. \square THEOREM 3. A finitely generated congruence distributive variety is directly representable by finitely many finite algebras (see McKenzie [2]) iff it is semi-simple arithmetical. **Proof.** (\Leftarrow) This is well-known. (\Rightarrow) If it is directly representable then it has only finitely many finite directly indecomposable members. Suppose **A** is a finite non-simple directly indecomposable member of the variety. Let θ be a maximal congruence of **A**. Then θ is directly indecomposable and $|\theta| > |A|$; repeating this Presented by K. A. Baker. Received July 4, 1979. Accepted for publication in final form September 8, 1980. Research supported by NSERC Grant A7256 | leads to infinitely many finite directly indecomposable members, which is impossi- | |--| | ble. Thus each directly indecomposable member is simple, hence the free algebra | | on three generators is isomorphic to a product of finitely many finite simples. | | From this we conclude that the variety is congruence permutable. \Box | ## References - PETER H. KRAUSS and DAVID M. CLARK, Global subdirect products. Memoirs of the AMS 17 No. 210 (1979). - [2] R. McKenzie, Para primal varieties: A study of finite axiomatizability and definable principle congruences in locally finite varieties. Alg. Universalis 8 (1978), 336-348. University of Waterloo Waterloo, Ontario Canada