Mailbox

A note on directly indecomposable algebras

STANLEY BURRIS

Given an algebra **A** and a congruence θ of **A** let θ be the subalgebra of $\mathbf{A} \times \mathbf{A}$ with universe θ . The results in this note depend on the following simple observation: if **A** belongs to a congruence distributive variety then the congruences of θ are just the restrictions to θ of the congruences $\theta_1 \times \theta_2$ of $\mathbf{A} \times \mathbf{A}$.

THEOREM 1. If V is a congruence distributive variety such that every directly indecomposable member is subdirectly irreducible then V is semi-simple.

Proof. Suppose **A** is a subdirectly irreducible non-simple member of V. Let θ be the unique atom of Con **A**. Then θ is directly indecomposable but it is not subdirectly irreducible. \square

COROLLARY 2. A congruence distributive variety is Boolean representable (see Clark and Krauss [1]) iff it is a discriminator variety.

Proof. If a congruence distributive variety is Boolean representable then it must be semi-simple by Theorem 1. The rest is in [1]. \square

THEOREM 3. A finitely generated congruence distributive variety is directly representable by finitely many finite algebras (see McKenzie [2]) iff it is semi-simple arithmetical.

Proof. (\Leftarrow) This is well-known. (\Rightarrow) If it is directly representable then it has only finitely many finite directly indecomposable members. Suppose **A** is a finite non-simple directly indecomposable member of the variety. Let θ be a maximal congruence of **A**. Then θ is directly indecomposable and $|\theta| > |A|$; repeating this

Presented by K. A. Baker. Received July 4, 1979. Accepted for publication in final form September 8, 1980.

Research supported by NSERC Grant A7256

leads to infinitely many finite directly indecomposable members, which is impossi-
ble. Thus each directly indecomposable member is simple, hence the free algebra
on three generators is isomorphic to a product of finitely many finite simples.
From this we conclude that the variety is congruence permutable. \Box

References

- PETER H. KRAUSS and DAVID M. CLARK, Global subdirect products. Memoirs of the AMS 17 No. 210 (1979).
- [2] R. McKenzie, Para primal varieties: A study of finite axiomatizability and definable principle congruences in locally finite varieties. Alg. Universalis 8 (1978), 336-348.

University of Waterloo Waterloo, Ontario Canada