Mailbox

A correction to "Definable principal congruences in varieties of groups and rings"

S. Burris and J. Lawrence

In the paper cited above [1], the proofs of Theorems 1.2 and 1.3 are incorrect. We do not know if the results, as stated, are correct. The error lies in assuming that for all $\omega(x, y, u, v, \bar{z})$ in Γ one can claim

$$F_k \models \omega(\bar{x}, \bar{y}, \bar{u}, \bar{v}, \bar{z}_0, \dots, \bar{z}_n)$$

as at the top of page 154. However for a restricted class of ω in Γ this claim holds, and if one replaces the lemma and theorems of § 1 by the following text then one has a result which is sufficiently strong for the study of groups and rings as in § 2,3. (The main results, those of § 2, 3, are correct as presented in [1].)

LEMMA 1. If K is closed under ultra products, then given formulas $\{\phi_i\}_{i\in I}$ and ϕ , we have $K \models \bowtie \phi_i \leftrightarrow \phi$ iff for some finite $J \subseteq I$, $K \models \bowtie \phi_i \leftrightarrow \phi$.

Proof. (Standard.)

DEFINITION 2. Let P be the set of polynomials $p(w, z_0, ..., z_n)$, $n < \omega$. For $P_0 \subseteq P$, a variety V has P_0 -projective principal congruences if, for $a, b, c, d \in A \in V$, $(a, b) \in \theta_A(c, d)$ holds iff

$$A \models \exists \vec{z} [a = p(e_1, \vec{z}) \& b = p(e_2, \vec{z})]$$

for some $p \in P_0$, where $\{e_1, e_2\} = \{c, d\}$.

Presented by G. Grätzer. Received April 5, 1979. Accepted for publication in final form March 6, 1980.

Two examples of varieties with P_0 -projective principal congruences follow:

(1) For rings let $P_0 = \{p_n : n \ge 1\}$ where

$$p_n(w, z_0, \ldots, z_{2n+1}) = \sum_{i=0}^{n-1} z_{2i} \cdot (w - z_{2n}) \cdot z_{2i+1} + z_{2n+1}.$$

To see that this works let $a, b, c, d \in R$, R a ring. Then $(a, b) \in \theta_R(c, d)$ iff a - b is in the ideal generated by c - d iff for some $n < \omega$ and some a_0, \ldots, a_{2n-1}

$$a-b=\sum_{i=0}^{n-1}a_{2i}(c-d)a_{2i+1}.$$

But then

$$a = p_n(c, a_0, \dots, a_{2n-1}, d, b)$$

 $b = p_n(d, a_0, \dots, a_{2n-1}, d, b).$

(2) For groups of finite exponent e let $P_0 = \{p_n : n \ge 1\}$ where

$$p_n(w, z_0, \ldots, z_{n+1}) = \left[\prod_{i=0}^{n-1} z_i^{-1} \cdot (w \cdot z_n^{-1}) \cdot z_i \right] \cdot z_{n+1}.$$

If G is a group of exponent e and a, b, c, $d \in G$ then $(a, b) \in \theta_G(c, d)$ iff ab^{-1} is a product of conjugates of cd^{-1} , hence iff for some n and $a_i \in G$,

$$ab^{-1} = \prod_{i=0}^{n-1} a_i^{-1} (cd^{-1}) a_i$$
.

But then

$$a = p_n(c, a_0, \ldots, a_{n-1}, d, b)$$

 $b = p_n(d, a_0, \ldots, a_{n-1}, d, b)$.

THEOREM 3. Let V be a variety with P_0 -projective principal congruences, for a given P_0 . Then V has DPC iff for some finite subset P'_0 of P_0 there is, for each $p(w, z_0, \ldots, z_n) \in P_0$, a $q(w, z_0, \ldots, z_k) \in P'_0$ and polynomials $q_i(u, v, z_0, \ldots, z_n)$, $0 \le i \le k$, such that V satisfies, for suitable $\{w_1, w_2\} = \{u, v\}$,

$$p(u, z_0, ..., z_n) = q(w_1, q_0(u, v, z_0, ..., z_n), ..., q_k(u, v, z_0, ..., z_n))$$

$$p(v, z_0, ..., z_n) = q(w_2, q_0(u, v, z_0, ..., z_n), ..., q_k(u, v, z_0, ..., z_n)).$$

Proof. (\Rightarrow) Suppose V has DPC. Then from Lemma 1 there must be a $P'_0 \subseteq P_0$ such that V satisfies

(*)
$$\underset{p \in P_0}{\bowtie} \exists \vec{z} [x = p(u, \vec{z}) \& y = p(v, \vec{z}))]$$

$$\leftrightarrow \underset{q \in P_0'}{\bowtie} \exists \vec{z} [x = q(w_1, \vec{z}) \& y = q(w_2, \vec{z})]$$

$$\{w_1, w_2\} = \{u, v\}$$

Given $p(w, z_0, ..., z_n) \in P_0$ let F be the free algebra in V freely generated by $u, v, z_0, ..., z_n$. In F let $x = p(u, z_0, ..., z_n)$, $y = p(v, z_0, ..., z_n)$. As

$$F \models \exists \vec{z} [x = p(u, \vec{z}) \& y = p(v, \vec{z})]$$

it follows by (*) that for some $q(w, z_0, ..., z_k) \in P'_0$,

$$F \models \exists \vec{z} [x = q(w_1, \vec{z}) \& y = q(w_2, \vec{z})]$$

with $\{w_1, w_2\} = \{u, v\}$. Thus we can choose polynomials $q_i(u, v, z_0, \dots, z_n) \in F$ such that

$$F \models x = q(w_1, q_0(u, v, z_0, \dots, z_n), \dots, q_k(u, v, z_0, \dots, z_n)).$$

$$F \models y = q(w_2, q_0(u, v, z_0, \dots, z_n), \dots, q_k(u, v, z_0, \dots, z_n)).$$

Of course if two polynomials are equal in F then the corresponding identity holds in V.

 (\Leftarrow) Let $a, b, c, d \in A \in V$ with $(a, b) \in \theta_A(c, d)$. Then, for some $p(x, z_0, \ldots, z_n) \in P_0$,

$$A \models \exists \vec{z} [a = p(e_1, \vec{z}) \& b = p(e_2, \vec{z})]$$

with $\{e_1, e_2\} = \{c, d\}$. Choose q, q_0, \ldots, q_k as in the statement of the theorem. Then, for suitable $\{\bar{e}_1, \bar{e}_2\} = \{c, d\}$,

$$A \models \exists \vec{z} [a = q(\bar{e}_1, q_0(\bar{e}_1, \bar{e}_2, \vec{z}), \dots, q_k(\bar{e}_1, \bar{e}_1, \vec{z}))$$

&
$$b = q(\bar{e}_1, q_0(\bar{e}_1, \bar{e}_2, \bar{z}), \dots, q_k(\bar{e}_1, \bar{e}_2, \bar{z}))]$$

so

$$A \models \exists \vec{z} [a = q(\bar{e}_1, \vec{z}) \& b = q(\bar{e}_2, \vec{z})].$$

Thus the formula $\phi(x, y, u, v)$ given by

$$\bigvee_{\substack{q \in P'_0 \\ (w_1, w_2) = \{u, v\}}} \exists \vec{z} [x = q(w_1, \vec{z}) \& y = q(w_2, \vec{z})].$$

defines principal congruences in V.

COROLLARY 4. Let V(K) be a variety with P_0 -projective principal congruences. Then V(K) has DPC iff Q(K) has DPC.

Proof. The direction (\Rightarrow) is clear. For (\Leftarrow) just repeat the first part of the proof of Theorem 3 as $F \in Q(K)$.

PROBLEM: For arbitrary K is it true that Q(K) has DPC implies V(K) has DPC?

REFERENCES

[1] S. Burris and J. Lawrence, Definable principal congruences in varieties of groups and rings. Alg. Univ. 9 (1979), 152-164.

University of Waterloo Waterloo, Ontario Canada