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Definable principal congruences in varieties of groups and rings

STANLEY BURRIS' AND JOHN LAWRENCE?

In [1] Baldwin and Berman showed that for varieties' ¥ with DPC (definable
principal congruences) certain results of Taylor concerning residually small var-
ieties could be sharpened. Their question as to whether every variety generated
by a finite algebra has DPC was answered in the negative in [2]; however the
question remained open for varieties with permutable congruences. The study of
DPC became even more interesting when McKenzie [4] proved that this property
could be used, in certain cases (such as a variety generated by a para-primal
algebra), to give an easy proof of the finite axiomatizablity of the variety.
McKenzie then showed that among lattices only the distributive varieties have
DPC, and states that the question of whether varieties generated by a finite group
or ring have DPC is open.

In the first section we point out that a variety ¥ has DPC iff the free algebra
on countably many generators in ¥ has SDPC (strongly definable principal
congruences), hence a variety generated by a class ¥ of algebras has DPC iff the
quasi-variety generated by % has DPC. In the second section a finite ring R is
constructed such that the variety generated by R does not have DPC. In the third
section we prove that if the variety generated by a finite group G has DPC then G
must be nilpotent; on the other hand if G is nilpotent class 2 and finite then
indeed it generates a variety with DPC. It follows that the properties of having
DPC and being finitely axiomatizable are independent for quasi-varieties gener-
ated by a finite group. Finally Baldwin’s theorem™ that the variety of all groups
of exponent 3 has DPC is shown to be best possible for Burnside varieties.

§1. General results on definable principal congruences

For A an algebra and a, b€ A let 6,(a, b) denote the principal congruence on
A generated by (a, b). If ¥ is a class of algebras (for this section we assume that
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we are working within a fixed similarity type) then we say % has DPC (definable
principal congruences) if there is a first-order formula ¢(x, y, u, v) such that for
any A€e¥ and a,b,c,de A, (a,b)eb,(c,d) iff AE ¢(a,b,c,d). A formula
w(x, y, u, v) of the form

n=1
3z[x = po(00(0), Z) & y=p,(0,(1),7) & _‘E—I p.(0:(1), Z) = p;s1(0741(0), )],

where the p,, ..., p, are arbitrary polynomials in the language of the algebras
being considered, and {o;(0), 0;(1)} ={u, v}, 0=i=n, will be called a congruence
formula. Let IT denote the collection of all congruence formulas (in the given
language). Then a well known theorem of Mal’cev asserts that for a, b, ¢, d€ A,

(a,b)eb,(c,d) if AE YV w(ab,cd).

well

LEMMA 1.1. If ¥ is closed under ultraproducts then % has DPC implies there
is a finite subset II' of II such that

HE V wlx,y,u,v)e V 7'(x, Y, U, ).

well w'ell’

Proof. (Standard.)

Let V(¥) be the variety generated by ¥, and Q(¥) the quasivariety generated
by X. Fy denotes the free algebra in V(¥) with countably many free generators.
¥ has SDPC (strongly definable principal congruences) if the conclusion of Lemma
1.1 holds. An open formula w(x, y, u, v, Z) is congruence-generating if 3 Zw eIl.
Let I" be the set of all congruence-generating formulas.

THEOREM 1.2. For any class ¥ of algebras we have the following.

(a) V() has DPC iff Q() has DPC iff F5 has SDPC.

(b) F,, has SDPC iff there is a finite subset I" of I' such that for each
o(x, y,u,v,2,...,2,)€I" we can find a formula o'(x, y, u, v, 2o, ..., z,)eI"" and
polynomials p,(x, y, u, v, 2o, . .., 2,), 0=i=<k, such that

HEwxy,uvzo ..., 2,)> &' (X, y,u0,po -, P)-

Proof. First we show that (b) holds. So suppose that II' is a finite subset of I1
such that F;, satisfies the conclusion of Lemma 1.1. Then let I’ be the set of
formulas o’ such that 3 Zw'e IT'. Then for w(x, y, u, v, z,, ..., z,) € I let %, ¥, etc.
be a mapping of the variables of w into Fy, such that &, 3, Z,, ..., Z, are distinct
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free generators and

Fyk(ﬂ(x, Y, U, 0, Zg, ..., fn)'

Then with 7 =3 Zo, it follows that there must be a =’ € IT', say n' =3 Zw’, where
w'is w'(x,y, u, v, zg, - .., z;), such that

Fy E7'(%, ¥, i, D).

As Fy is free we can find polynomials p;(x, y, u, v, 2, . . ., 2,), 0=i =Kk, such that,

with p, =p,(%, y, 4, , Z,, . .., Z,), we have

Fg}r F w’(x, Yy, U, v, Pos - -+ ﬁk)'

But now an easy argument using the fact that w, »’' are conjuncts of atomic
formulas with x and y being equal to polynomials in the other variables shows
that indeed

-%1: w{x. y; u, v, Z(]s EECIEIEY Z“) - w'(x, Y, u, v, p[]! Teey pk}-

For the other half of (b) note that implications of the form immediately above are
preserved by subdirect products, hence

HEwXy,uv,20 ...y 2,) = @' (X, 9, U, U, Pgs - - - P)
implies
F&{F w{xs)’s uav!z{)s ey zn)_) w,(xQYaustPOs s ey Pk)

But then it is clear that IT' equal to the finite set of formulas 3 Zw', where w'e I”,
will suffice to show that F, has SDPC.

Now, to prove (a) it suffices to show that F,, has SDPC implies V(%) has DPC
since Fy € Q(¥) = V(¥), noting that Q(3) has SDPC if it has DPC by Lemma 1.1.
So assume F; has SDPC and let I'" be as in (b). Then for wel, w'eI”, and
polynomials p; such that

'% |= w(x-’ Ys u, v, Zf]s ) Zn] —> w'(x' y, u, v, pl]! LI ] pk)‘
it follows that we have the more general assertion

V) E o(x,y,u,v, 2, ..., 2,) = @' (X, 9, U, U, Poy - - -5 Pi)s
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and thus with IT'={3 0’| ©'e '} it is straightforward to show that V(¥) has
SDPC, hence DPC.

In the next two sections it is more useful to work with the following slight
modification of Theorem 1.2b (however the proof is exactly the same).

THEOREM 1.3. If I'* is a subset of I such that for any w(x, y, u, v, Z) in I there
is an w*(x,y, u, v, w) in I'* such that

V#H)E 3 iw(x, y, u, v, Z) = 3 wo™(x, y, u, v, W)

than Theorem 1.2b holds with T replaced by I'*.

§2. A finite ring R such that V(R) does not have DPC

We will now restrict out attention to the language {+,-,—,0,1} of rings with
unity. It is clear that a class % of rings has DPC iff there is a first-order formula
&(x, y) such that for Re ¥ and a, be R, a€(b)g iff RF ¢(a, b), where (b)g is the
principal two-sided ideal of R generated by b. Let m,(x, y) be the formula

dz,---3 22n+1(x = E Zzi)’zzin)-

i=0

Then one has ae(b)g iff R=\ ., m(a,b). For the class of rings we have
m,(x, y) = mi(x, y), n<w, so Theorem 1.3 leads to the following.

LEMMA 2.1. If X is a class of rings with unity then V(X) has DPC iff there
are natural numbers k,n with k<n, and polynomials r(y, zo, ..., Zans1)s
$i(Ys Zos - -+ » Zans1), 0=i=n—1, such that K satisfies the identity

k

Z2i¥Z2i1 = Z ri(y, 2)ysi(y, 2).

i=0

it

For a given field F and set X ={x}; <, of non-commuting indeterminates let
R = F[X]. Let I be the ideal generated by X*, i.e. all products of four elements of X.

LEMMA 2.2. If r, and s; are elements of R such that

n
z XiXoX; —
i=1

then k=n.

k
rxgs; €l
1

i=
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Proof. Let r,=a;+ b, where a; and b, are both sums of monomials with the
property that each monomial in g, is either a scalar or begins with x,, and no
non-zero monomial of b; is a scalar or begins with x,. Likewise let s, =c; +d;
where each of ¢; and 4; is a sum of monomials with each monomial in ¢; either a
scalar or ending in x,, and no non-zero monomial of d; is a scalar or ends in x,,.
Then from

n k k
Z X;XoX; — Z a;xoS; — Z bxgs; el

i=1 i=1 i=1

follows

=

k
x,-xnx,- - Z bl'xnsl' € I
i=1 i=1

]

since the expansion of the middle summation gives precisely those monomials
starting with x,. Similarly we can conclude from the last formula

k
ijux,- - Z b,-x(,di =] I.
i=1

™=

i=1

Without loss of generality we can now assume that each b; and d; is a linear
combination of the indeterminates x,, ..., X,»say d; = X/-; X, a; € F. Then

n k n k
Y XXoX; = ). bxodi= ) [ Y a,ib,] XoX;
im=1 i=1 i=1L j=1
hence

b

is I=i=n

R
Il
o

a;

i=1

But x,, ..., x, are linearly independent over F, hence k =n.

LEMMA 2.3. V(R/I) does not have DPC.
Proof. Just combine Lemmas 2.1 and 2.2.
Now let R’ be the ring F[x,, x;, X,], and let I’ be the ideal of R’ generated by

{x{b X1, xl}d‘

THEOREM 2.4. V(R'/I') does not have DPC.
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Proof. By Lemma 2.3 it suffices to show that R/I e V(R'/I'), where of course
we are using the same field F for the polynomial rings R and R’. Let us say that a
sum of monomials in R is reduced if it cannot be written as a sum of fewer
monomials. Suppose ¥ <;<, m; is a reduced sum of monomials in R but not in I
Then my, is not in I, and after applying a suitable automorphism (determined by a
bijection of the indeterminates) we can further assume that m, is in R’ but not in
I'. Then the homomorphism «:R/I — R'[I' satisfying a(x;)=x; if 0=<=i=<2, and
a(x;)=0 if i>2, is such that a(m,+I)# 0, hence c::(zt,ﬁ;m m;+I)#0,s0 R/l is a
subdirect power of R'/I'.

Letting F be a finite field we obtain a finite ring R !I' such that V(R'/I') does
not have DPC. These rings are rather large, however, for if F is the two-element
field then R'/I' has 2*° elements. One can sharpen the above argument slightly by
increasing I' and reducing R’ to F[x,, x,] to obtain a ring with only 64 elements
such that the variety it generates does not have DPC.

§3. The DPC property for varieties of groups.
For groups we have, parallel to the reasoning which led to Lemma 2.1, the

following.

LEMMA 3.1. If ¥ is a class of groups of finite exponent then V() has DPC iff
for some n>k =0 and polynomials p,(y, Xo, . . -, X,), 0=i=k, the class X satisfies
the identity

nx yX; _H pl l(y9 Xos + - - vxn])’pi()’- Xos -+ - "xn}' (*)
i=0

It is well-known that the variety of Abelian groups of exponent e has DPC, for
e <w. A simple extension of this result gives our strongest positive result.

THEOREM 3.2. If ¥ is the variety of nilpotent class 2 groups of exponent e
(where e is finite) then V' has DPC.

Proof. By Lemma 3.1 it suffices to show that 7" satisfies
[Ix'yxi=(x0 %) "y(xo. .. x).
i=0

But this is an easy consequence of the existence of a polynomial p(x, y) such that
¥ satisfies the identities zp(x, y)=p(x, y)z and x™'yx = yp(x, y).
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The next lemma contains the key observation for showing that various groups
generate varieties without DPC.

LEMMA 3.3. Let G be a group of finite exponent e and with elements a, b such
that b commutes with each a~'ba’, 1<i<e. If G satisfies an identity (*) and t is
any natural number such that b= a~'ba' then for any finite sequence i, . .., i, of
natural numbers with iy+ - -+ +1i, =0 mod (t) it follows that

bmtl= ﬁ a~'ba'.

i=0
Thus, in particular,
b'a=ab".

Proof. Suppose an identity of the form (*) holds in G. Then we select an
identity of the form (*) which holds in G such that n>me**'. This is indeed
possible as (*) implies that for any s there is an r<n and g; such that
oo xi'yxi =ITiz0 @' (v, Xo, - - -5 X)¥Gi(Y, Xo, - - - X;) holds in ¥, e.g.

n+1 n
— - =1
x;lyx; =(I l X "}’Ii)xnn)’xnn
i i=0

n+1

.—_(n p;’ypi)x;l,‘yx,ﬁ,, etc., so we can choose s> me
i=0

and then an appropriate r<n to obtain a suitable form of (¥).
Let us write out the expression p; '(y, Xq, - . ., X,)¥P;(¥, X, - - -, X,,) in the form

Epoy oG p R, W EOL L)y (TR FO T, Ly TR
(xxpoy*oxit y =« xZR)y (eHey T e ex).

If we now assume that y commutes with xi*yxy* and the x’s commute
with each other (which is true if we let ye{b, 1}, x;€{1, a, ..., a®"'}) then this can
be rewritten as

(xgho -+ ox )y (xfo - - - X, 0=t;<e,
by cancelling the y“’s and collecting terms. Thus for a(x;)e{l,a,...,a*" "},

pi“, O!'[JE)} = a(xn)l,.‘, - 'a’(x,,)'m, SO

pi ' (1, a(X))bpi(1, (X)) = p; ' (b, a(x))bp;(b, a(x)).
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An easy counting argument shows that for some x;, ..., x, , 0=<j,<j, <.--<
Jm=n we must have ; =---=¢, for 0=i<k. For let E be the equivalence
relation on {0, ..., n} defined by r=s iff t, = t,, 0=<i=<k. This divides {0, ..., n}
into =e**! classes (as each t€{0, ..., e—1}). Consequently if n>me**' then
some class will contain > m elements, i.e. there will be j,<j, <---<j, =n such
that f;, =1, =---=1, for 0=i<k. Now define a(x,)=a" 0=s=m, and a(x;)=

1 otherwise; and let B(x;)=1 for 0=j=<n. Then, for 0=i<k, we can use the
congruence iy+- - -+i, =0 mod (¢) to show

pi '(1, B(X)bp(1, B(X)) = p; (1, a(X))bp,(1, a(X)),
and hence
pi'(b, B(X))bp;(b, B(X)) = p; ' (b, a(X))bp,(b, a(X)).

But then from (*) we must have

[T 8" 680x) = T )" batx),

i=0

that is,

b+t =" [ a~*ba’,
j=0

1

and thus
b+ =] a~'ba'.
j=0
Finally, with m=1t—1 and i,=---=1i, =1 we have b'a=ab".

COROLLARY 3.4. The variety V(D,), where D,, is the dihedral group of order
2n, has DPC iff n=1,2 or 4.

Proof. If n=4 then D, is nilpotent class 2, hence Theorem 3.2 applies. If
n>4 or =3 then, as D, has the presentation {a*=1, b" =1, aba = b"'}, we can
use this a and b in Lemma 3.3 to show V(D,) does not have DPC by letting t =2
and noting that ab®# b?a.

Now we are in a position to show that for quasi-varieties generated by finite
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groups the properties of having DPC and having a finitely axiomatizable theory
are independent, in view of Ol'Sanskii’s theorem.

THEOREM 3.5. (Olsanskii [6]) For G a finite group Q(G) is finitely ax-
iomatizable iff all Sylow subgroups of G are Abelian.

Thus, for the two-element group Z,, Q(Z,) has DPC and is finitely axiomatiz-
able. The symmetric group on three letters, S,, is such that Q(S,) is finitely
axiomatizable but does not have DPC. Q(D,) has DPC, but is not finitely
axiomatizable; and Q(Dy) has neither property. (According to Ol'Sanskii [5] the
first two examples are actually varieties.)

We return to our study of finite groups G such that V(G) does not have DPC.

LEMMA 3.6. If G is a finite solvable group and V(G) has DPC then G is
nilpotent.

Proof. We proceed by induction on |G|, the cardinality of G. For |G|=1 the
argument is trivial, so suppose |G|>1 and the lemma holds for all groups smaller
than G. Let H be a proper normal subgroup such that G/H is a cyclic g-group (q
being a prime number). If V(G) has DPC then clearly V(H) has DPC, hence H is
nilpotent. If H is a g-group then G is also a g-group and we are finished.
Otherwise H has a non-trivial Sylow p-group S with p# q. Let C be the center of
S. Then choose ge G such that g/H generates G/H and the order of g is q™ for
some m. Since g~'Sg< H and S is a Sylow subgroup of H we have g~ 'Sg =S, and
thus g7 'Cg = C as the center of H is invariant under automorphisms.

We want to show that C is in the center of G. For this it suffices to show that g
commutes with elements of C. If ¢ € C then from Lemma 3.3, with ¢ the order of
g, follows gc'=c'g. But since g and c¢ have relatively prime orders this implies
gc = cg. Thus |G/C(G)|<|G|, C(G) being the center of G, so G/C(G) is nilpotent
as V(G/C(G)) has DPC, hence G is nilpotent.

THEOREM 3.7. If G is a finite group such that V(G) has DPC then G is
nilpotent.

Proof. Again we use induction on the cardinality of G. The ground case is
trivial, so suppose |G|>1 and the theorem holds for all smaller groups. As the
proper subgroups of G are nilpotent (by induction), a theorem in [7] (p. 148) says
G is solvable, and we apply Lemma 3.6.

Originally we conjectured that Theorem 3.7. could be improved to state ‘“‘then
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G is nilpotent class 2. Examples of nilpotent class 3 groups which we examined
included Dy, the generalized quaternions, and the group of units of the local ring
R'/I' defined in §2. In these cases we knew the conjecture to be true. However
Baldwin soon informed us that, thanks to a suggestion of P. Fong, he has proved
the following result, negating the conjecture. In the following we let y*=x""yx
and [x, y]=x""y 'xy.

THEOREM 3.8. (Baldwin) The variety of all groups of exponent 3 has
definable principal congruences.

Proof. First we list some basic facts about groups of exponent 3 (see [3], p.
150, p. 321, 322):

(a) commutators of weight four give the identity element,

(b) for any element y, all conjugates and commutators of y commute,

(c) [xa Y, Z] = [)’s z, X],

@) [x, yz]=[x yllx, z1x, y, z],

(c) [x! y’ z]‘-1 = [x, z! Y]'

Claim 1: [x, y, uv]=[x, y, ullx, y, v] (from a, b, d).

Claim 2. y* "=y H [y, x;] 1_[ [y, x; x;1.

1=i=n 1=i<j=n

Proof. This is clearly true for n =1, and easily checked for n =2 using (d), so
assuming it is true for k <n, we have

yrt=yly, x, ... x,]
=yly, x, [y, x5 ... x. [y, x4, x2... x,] by (d)

so, using the induction hypothesis and (1), this is

=Y[)’-x1]( H [y, x;] I_I [}’:xssx;]) H [y'xhxj]

2=i=n 2=i<j=n 2=sj=n

= the desired answer by (b).

Claim 3: [x[y, z]1=[x, z, y].
Proof.
(x[y, z]1=[[y, z], x]™*

=[y, z,x]™

=[y, x, z] by (e)
=[x,z,y] by (o).
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Claim 4:

ynm.:.-‘n[”r 1= y ]._.[ [y., X;, x,.-]

Isi<jsn
Proof. Use (2), (3) and (a).
Claim 5:

y"yx!"'xn = yxl_ . yxnylllslﬂisn[xrxu]_
Proof. This is immediate from (b), (2) and (4) as y* = y[y, x;].

Claim 6: y*...y* =y y%*(ylhe<=lsx))? follows from claim 5 and the
exponent 3 law.

Thus

yxl’ .. y’:ﬁ = {y"l' T xh){ynlﬂ-.'rsﬁ[xi‘ xi])z_

hence by Lemma 3.1 the variety of groups of exponent 3 has DPC.

Baldwin’s result is best possible for the Burnside varieties, i.e. varieties of
groups defined by an equation x" = 1, as we shall see. Letting R be the ring F[X],
F a finite field, and I the ideal defined in §2, note that for m € XF[X] the element
1+ m+1 is a unit of the ring R/I as (1+m)(1-m+m?*-m?)+I=1+1 Let G be
the subgroup of the group of units of R/I consisting of those elements of the form
1+m+1I, me XF[X].

LEMMA 3.9. With R and I as defined above suppose

[T A+x)'"0+x)A+x)— J] A+m)'"A+x)1+m)el

l=i=n I=isk

where m, € XF{X]. Then k =n.

Proof. The above can be written as

[T O=-x+x2=x)A+x)A+x)— [ A=m+m2=md)(1+x)(1+m)el

1=i=n 1=si=k

SO

[T 1+ =x+xDx(1+x)]= [[ 1+ =m+mdx(1+m)]el

1=i=n 1=i=k
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From this follows (collecting terms of degrees 3 with x, only in the middle)

Y xXox;— Y. mxom;el, for some Jc<{l, ..., k},

1=i=n iet

hence by Lemma 2.2, k=n.
LEMMA 3.10. For G as defined above, V(G) does not have DPC.

Proof. An easy consequence of Lemma 3.9 in view of Lemma 3.1.
Let R’ and I’ be as defined in §2, and let G’ be the finite group of units of
R'[I' of the form 1+m+1I', me{x,, x,, X} F[{x0, X1, X5}].

LEMMA 3.11. For G’ as defined above, V(G’) does not have DPC.

Proof. This follows from noting that G is a subdirect power of G’ (since R/I is
a subdirect power of R'/I' as shown in §2) and Lemma 3.10.

THEOREM 3.12. Let ¥, be the variety of groups defined by x" =1. Then ¥,
has DPC iff n=3.

Proof. ¥V, consists of abelian exponent 2 groups, hence it satisfies
[lo=i=2 xi 'yx; = y, so by Lemma 3.1 it has DPC. ¥, was discussed in Theorem 3.8.
For n=4 let F be the two element field and note that (1+m)*+I=1+1 for
m € XF[ X], hence the corresponding G’ is in ¥, so by Lemma 3.11 ¥, does not
have DPC. Consequently, if 4| n then ¥,< ¥, so ¥, does not have DPC. For
n =6 note that D, ¥, so Corollary 3.4 says ¥ does not have DPC. Finally, if
n>3, n#6 and 4 / n then for some prime p=35, p | n. For this case let F be the
p-element field and observe that (1+m)” +I=1+1I for m € XF[X], so the corres-
ponding G’ is in ¥, hence in . Then again by Lemma 3.11, ¥, does not have
DPC.

PROBLEM 1. Complete the classification of finite groups G such that V(G) has
DPC. (In particular, is there a finite group which does not satisfy x*=1 and is not
nilpotent class 2 such that V(G) has DPC?)

PROBLEM 2. Carryoutasimilar program forrings, looking at questions such as:
is there an interesting connection between a local ring and its group of units
insofar as the property DPC is concerned?
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