Algebra Universalis, 12 (1981) 148-153 0002-5240/81/002148-06%$01.50+0.20/0
© 1981 Birkhauser Verlag, Basel

Two examples concerning the definability of the disjointness prop-
erty of principal congruences

STANLEY BURRIS'AND JOHN LAWRENCE?

In [3] we showed that a variety generated by a finite group or a finite ring need
not have definable principal congruences. McKenzie [4] had earlier proved a
similar result for varieties generated by finite lattices. One of the major reasons
for pursuing the question of which varieties have definable principal congruences
has been McKenzie’s theorem in [4] which connects this concept with the study of
finite bases of equational theories. From known counterexamples it was clear that
McKenzie’s theorem could not be applied to obtain the far-reaching result of
Baker [1]. Nonetheless Baker announced during the Oberwolfach meeting on
Universal Algebra in 1976 that a related definability problem has a positive
solution in the case of the finitely generated congruence distributive varieties he
was considering, namely the definability of ““8(a, b) N 6(c, d) = A,”” which, following
a suggestion of K. Baker, we call the definability of the disjointness property of
principal congruences, abbreviated DDPC. (This observation of Baker was used
by Burris [2] to simplify the original proof of Baker’s theorem.)

One of the directions pursued by those working on finitely based equational
theories has been a search for a common generalization of Baker’s theorem for
congruence distributive varieties, the Oates-Powell theorem for groups, and the
Kruse/L’vov theorem for rings. Several natural possibilities were recently excluded
by Polin’s example in [5] of a finite non-associative ring with a non-finitely based
equational theory. In this paper we show that finitely generated varieties of
groups and rings need not have DDPC, thus eliminating another possibility.

The reader is referred to [3] for definitions and basic results concerning
congruence formulas 7 (x, y, u, v). For a fixed type 7 of algebras let II be the set
of congruence formulas. Then for A an algebra of type 7 and a, b, c,d€ A,

(c,d)eb(a,b) iff AFW mx(cd,a,b).

well

We will say that a variety V of type 7 has DDPC iff there is a first order
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formula ¢(x, y, u, v) such that for a,b,a’,b'e A€V,
0(a,b)NO(a',b)=A iff AEd(a,b,a’,b").

By a compactness argument the following is easily established.

LEMMA 1. V has DDPC iff there is some finite I, < II such that for every a, b,
a', b'e A€V,

0(a, b)N6(a’, b)= A iff AFVxVy

{ & [m(x,y, a b)&m(x, y,a',b)—>x= y]}.

wy,maelT

For groups [rings] one can replace the notion of principal congruence 6(a, b)
by principal normal subgroup (g) [principal ideal {r)] as in [3] to obtain the
following special cases of Lemma 1.

LEMMA 2. If V is a variety of groups of finite exponent then V has DDPC iff
there is a natural number n such that for g, g'e Ge 'V,

(gyN(g"=1{1}

'GFVx{ & |:Ely0 - Ely.-(x = H ys gy:)€ Az, - - - Az
(=M=gz)—x=1]}

LEMMA 3. If V is a variety of rings (with 1) then V has DDPC iff there is a
natural number n such that for r, e Re V, (ryN{r'y={0} iff

RFVx[ByO . a)’2n+1(x = Z str)’zsﬂ)sg 3z, -+ 325,40,

5=n
(x = Z ZZ:rr22t+1) —X= 0]

i=n

Our first example uses a ring which we have already constructed in [3]. Given a
finite field let R =F[X] where X ={X,},_,, a set of non-commuting indetermi-
nates, and let I be the ideal of R generated by {X; - - - X, | X, , ..., X € X}. Also
let R"=F[X,, X;, X;]and I'=R'NL
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THEOREM 4. With R’ and I' as constructed above, R'/I' is finite but V(R'/I")
does not have DDPC.

Proof. From [3] we know that R/I€ V(R'/I'). Given a positive natural number
n it is clear that Q- XX, X; + I)=(X,+I) holds in R/I. Noting that

<Z XXX, +I>= {fé1 XXX, +1|fe F}

i=1
we see that if

m

Y a,Xob,+1e <:1 X, Xo X, + I)—{I}

r=1 =

then, after multiplying by a scalar we have

i XXX, +1=Y, a'Xob,+1.
i=1 1

r=

But then, from Lemma 2.2 in [3] we have m =n, so by Lemma 3 V(R'/I') does
not have DDPC. O

For the group example we need a variation on the above construction, namely
let J be the ideal of R generated by {X3, X, XX, XX }1<ij- The following is
almost the same as Lemma 2.2 of [3] with I replaced by J, hence noting that
R/J e V(R/I) we could also have proved Theorem 4 using R/J rather than R/L

LEMMA 5. Let {i},...,i,} and {j;,...,j.} be sets of n distinct positive
integers. If

Y X, XoX, - Y, aXob,€J
k=1 r=1

for some a,, b, € R, then m=n.

Proof. Without loss of generality we can assume b, =},., g.X; where g, € F.
Thus
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and then it follows that
Xik_ Z gﬁka” E.I.
=1
But the (X +J)'s are linearly independent over F, so m=n. [J
Let G be the group of units of R/J. Note. that if 1+m+Je G and each

monomial in m contains X, then (1+m+J)"'=1—m+J and this is a product of
conjugates of 1+m +J (namely a power of 1+m+J).

LEMMA 6. If 1=i<jthen 1+X.X,X;+ XXX +J is a product of conjugates
of 1+X,+J.

Proof. Let
I+ta+J=(1+X)(1+X,)(1-X)(1-X,)+J,
a product of conjugates of 1+ X,+J. Then
lta+J=1+XX,— X, X; — X, X X; +J.
Let

1+B+J=(1-X)(1+a)1+X)+J
=l+ta—Xa+taX +J

=1+ a+ XXX, + XX, X, +J
SO
(1+B)(1—a)+T =1+ XX, X, + X, X, X + 1.
Thus 1+XXX +X.X,X;+J is a product of conjugates of 1+X,+J. [
LEMMA 7. V(G) does not have DDPC if F =GF(2).

Proof. let

Y +J= l—] (1 + XZi_.1X0X2.'+X‘2EX0X’ZE—-1)+J'
i=1
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Then y+J is central, (y+J)>’=1+j, and y+J is a product of conjugates of
1+ X,+J. Thus

{1+, y+J}=(y+ {1+ X,+J).

Now if
y+J=[] A+a)(1+X)1+b)+J
i=1

where
(1+ g +) =1 +b;+17,

then
y+J=]] A+ Xo+a,Xo+ Xob; + a;X,b,) +J.
j=1

It is now clear that we can assume, without loss of generality, that each g; is a sum
of X;’s i=1, and hence that b; = a;. Then, equating the terms of degree 3 in the
last equation gives

(X5i-1 X0 X5 + X0: X0 X5i-1) +J = Z a;Xoa; +J,
=1 j=1

i=

and then by Lemma 5, m = n. Thus by Lemma 2 V(G) does not have DDPC. [
With F= GF(2) let G’ be the group of units of R'/I'.

THEOREM 8. G’ is a finite group and V(G') does not have DDPC.

Proof. In [3] we pointed out that the group G” of units of R/I is in V(G'), and
G is a quotient of G", hence G e V(G'). Now we apply Lemma 7. [
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