Two examples concerning the definability of the disjointness property of principal congruences

STANLEY BURRIS AND JOHN LAWRENCE²

In [3] we showed that a variety generated by a finite group or a finite ring need not have definable principal congruences. McKenzie [4] had earlier proved a similar result for varieties generated by finite lattices. One of the major reasons for pursuing the question of which varieties have definable principal congruences has been McKenzie's theorem in [4] which connects this concept with the study of finite bases of equational theories. From known counterexamples it was clear that McKenzie's theorem could not be applied to obtain the far-reaching result of Baker [1]. Nonetheless Baker announced during the Oberwolfach meeting on Universal Algebra in 1976 that a related definability problem has a positive solution in the case of the finitely generated congruence distributive varieties he was considering, namely the definability of " $\theta(a, b) \cap \theta(c, d) = \Delta$," which, following a suggestion of K. Baker, we call the definability of the disjointness property of principal congruences, abbreviated DDPC. (This observation of Baker was used by Burris [2] to simplify the original proof of Baker's theorem.)

One of the directions pursued by those working on finitely based equational theories has been a search for a common generalization of Baker's theorem for congruence distributive varieties, the Oates-Powell theorem for groups, and the Kruse/L'vov theorem for rings. Several natural possibilities were recently excluded by Polin's example in [5] of a finite non-associative ring with a non-finitely based equational theory. In this paper we show that finitely generated varieties of groups and rings need not have DDPC, thus eliminating another possibility.

The reader is referred to [3] for definitions and basic results concerning congruence formulas $\pi(x, y, u, v)$. For a fixed type τ of algebras let Π be the set of congruence formulas. Then for A an algebra of type τ and $a, b, c, d \in A$,

$$(c, d) \in \theta(a, b)$$
 iff $A \models W_{\pi \in \Pi} \pi(c, d, a, b)$.

We will say that a variety V of type τ has DDPC iff there is a first order

¹ Research supported by NRC Grant A7256.

² Research supported by NRC Grant A4540 and University of Waterloo Grant 131-7052.

Presented by G. Grätzer. Received January 20, 1979. Accepted for publication in final form September 6, 1979.

formula $\phi(x, y, u, v)$ such that for $a, b, a', b' \in A \in V$,

$$\theta(a, b) \cap \theta(a', b') = \Delta$$
 iff $A \models \phi(a, b, a', b')$.

By a compactness argument the following is easily established.

LEMMA 1. V has DDPC iff there is some finite $\Pi_0 \subseteq \Pi$ such that for every a, b, $a', b' \in A \in V$.

$$\theta(a, b) \cap \theta(a', b') = \Delta \text{ iff } A \models \forall x \forall y$$

$$\left\{ \mathcal{L}_{\pi_1,\pi_2 \in I} \left[\pi_1(x, y, a, b) \mathcal{E} \pi_2(x, y, a', b') \to x = y \right] \right\}.$$

For groups [rings] one can replace the notion of principal congruence $\theta(a, b)$ by principal normal subgroup $\langle g \rangle$ [principal ideal $\langle r \rangle$] as in [3] to obtain the following special cases of Lemma 1.

LEMMA 2. If V is a variety of groups of finite exponent then V has DDPC iff there is a natural number n such that for $g, g' \in G \in V$,

$$\langle g \rangle \cap \langle g' \rangle = \{1\}$$

iff

$$G \models \forall x \Big\{ \underset{i,j \leq n}{\&} \left[\exists y_0 \cdots \exists y_i \left(x = \prod_{s \leq i} y_s^{-1} g y_s \right) \mathscr{E} \exists z_0 \cdots \exists z_j \right. \\ \left. \left(x = \prod_{t \leq i} z_t^{-1} g' z_t \right) \rightarrow x = 1 \right] \Big\}.$$

LEMMA 3. If V is a variety of rings (with 1) then V has DDPC iff there is a natural number n such that for r, $r' \in R \in V$, $\langle r \rangle \cap \langle r' \rangle = \{0\}$ iff

$$R \models \forall x \left[\exists y_0 \cdots \exists y_{2n+1} \left(x = \sum_{s \le n} y_{2s} r y_{2s+1} \right) \mathscr{E} \exists z_0 \cdots \exists z_{2n+1} \left(x = \sum_{t \le n} z_{2t} r' z_{2t+1} \right) \rightarrow x = 0 \right].$$

Our first example uses a ring which we have already constructed in [3]. Given a finite field let R = F[X] where $X = \{X_n\}_{n < \omega}$, a set of non-commuting indeterminates, and let I be the ideal of R generated by $\{X_{i_1} \cdots X_{i_4} \mid X_{i_1}, \dots, X_{i_4} \in X\}$. Also let $R' = F[X_0, X_1, X_2]$ and $I' = R' \cap I$.

THEOREM 4. With R' and I' as constructed above, R'/I' is finite but V(R'/I') does not have DDPC.

Proof. From [3] we know that $R/I \in V(R'/I')$. Given a positive natural number n it is clear that $\langle \sum_{i=1}^{n} X_i X_0 X_i + I \rangle \subseteq \langle X_0 + I \rangle$ holds in R/I. Noting that

$$\left\langle \sum_{i=1}^{n} X_{i} X_{0} X_{i} + I \right\rangle = \left\{ f \sum_{i=1}^{n} X_{i} X_{0} X_{i} + I \mid f \in F \right\}$$

we see that if

$$\sum_{r=1}^{m} a_r X_0 b_r + I \in \left\langle \sum_{i=1}^{n} X_i X_0 X_i + I \right\rangle - \{I\}$$

then, after multiplying by a scalar we have

$$\sum_{i=1}^{n} X_{i} X_{0} X_{i} + I = \sum_{r=1}^{m} a_{r}' X_{0} b_{r} + I.$$

But then, from Lemma 2.2 in [3] we have $m \ge n$, so by Lemma 3 V(R'/I') does not have DDPC. \square

For the group example we need a variation on the above construction, namely let J be the ideal of R generated by $\{X_0^2, X_0 X_i X_0, X_i X_j\}_{1 \le i,j}$. The following is almost the same as Lemma 2.2 of [3] with I replaced by J, hence noting that $R/J \in V(R/I)$ we could also have proved Theorem 4 using R/J rather than R/I.

LEMMA 5. Let $\{i_1, \ldots, i_n\}$ and $\{j_1, \ldots, j_n\}$ be sets of n distinct positive integers. If

$$\sum_{k=1}^{n} X_{i_k} X_0 X_{j_k} - \sum_{r=1}^{m} a_r X_0 b_r \in J$$

for some $a_r, b_r \in R$, then $m \ge n$.

Proof. Without loss of generality we can assume $b_r = \sum_{l \ge 1} g_{rl} X_l$ where $g_{rl} \in F$. Thus

$$\sum_{r=1}^{m} a_r X_0 b_r = \sum_{r=1}^{m} a_r X_0 \left(\sum_{l \ge 1} g_{rl} X_l \right)$$
$$= \sum_{l \ge 1} \left(\sum_{r=1}^{m} g_{rl} a_r \right) X_0 X_l,$$

and then it follows that

$$X_{i_k} - \sum_{r=1}^m g_{rj_k} a_r \in J.$$

But the $(X_{i_k} + J)$'s are linearly independent over F, so $m \ge n$. \square

Let G be the group of units of R/J. Note that if $1+m+J \in G$ and each monomial in m contains X_0 then $(1+m+J)^{-1} = 1-m+J$ and this is a product of conjugates of 1+m+J (namely a power of 1+m+J).

LEMMA 6. If $1 \le i < j$ then $1 + X_i X_0 X_j + X_j X_0 X_i + J$ is a product of conjugates of $1 + X_0 + J$.

Proof. Let

$$1 + \alpha + J = (1 + X_i)(1 + X_0)(1 - X_i)(1 - X_0) + J$$

a product of conjugates of $1+X_0+J$. Then

$$1 + \alpha + J = 1 + X_i X_0 - X_0 X_i - X_i X_0 X_i + J.$$

Let

$$1 + \beta + J = (1 - X_{i})(1 + \alpha)(1 + X_{i}) + J$$
$$= 1 + \alpha - X_{i}\alpha + \alpha X_{i} + J$$
$$= 1 + \alpha + X_{i}X_{0}X_{i} + X_{i}X_{0}X_{i} + J$$

so

$$(1+\beta)(1-\alpha)+J=1+X_{j}X_{0}X_{i}+X_{i}X_{0}X_{j}+J.$$

Thus $1+X_jX_0X_i+X_iX_0X_j+J$ is a product of conjugates of $1+X_0+J$. \square

LEMMA 7. V(G) does not have DDPC if F = GF(2).

Proof. let

$$\gamma + J = \prod_{i=1}^{n} (1 + X_{2i-1} X_0 X_{2i} + X_{2i} X_0 X_{2i-1}) + J.$$

Then $\gamma + J$ is central, $(\gamma + J)^2 = 1 + j$, and $\gamma + J$ is a product of conjugates of $1 + X_0 + J$. Thus

$${1+i, \gamma+J} = \langle \gamma+J \rangle \subseteq \langle 1+X_0+J \rangle.$$

Now if

$$\gamma + J = \prod_{i=1}^{m} (1 + a_i)(1 + X_0)(1 + b_i) + J$$

where

$$(1+a_i+J)^{-1}=1+b_i+J,$$

then

$$\gamma + J = \prod_{i=1}^{m} (1 + X_0 + a_i X_0 + X_0 b_i + a_j X_0 b_i) + J.$$

It is now clear that we can assume, without loss of generality, that each a_i is a sum of X_i 's $i \ge 1$, and hence that $b_i = a_i$. Then, equating the terms of degree 3 in the last equation gives

$$\sum_{i=1}^{n} (X_{2i-1}X_0X_{2i} + X_{2i}X_0X_{2i-1}) + J = \sum_{i=1}^{m} a_iX_0a_i + J,$$

and then by Lemma 5, $m \ge n$. Thus by Lemma 2 V(G) does not have DDPC. \square

With F = GF(2) let G' be the group of units of R'/I'.

THEOREM 8. G' is a finite group and V(G') does not have DDPC.

Proof. In [3] we pointed out that the group G'' of units of R/I is in V(G'), and G is a quotient of G'', hence $G \in V(G')$. Now we apply Lemma 7. \square

REFERENCES

- [1] K. BAKER, Finite equational bases for finite algebras in congruence distributive equational classes. Advances in Math. 24 (1977), 207-243.
- [2] S. Burris, On Baker's finite basis theorem for congruence distributive varieties. Proc. AMS 73 (1979), 141-148.

- [3] S. Burris and J. Lawrence, Definable principal congruences in varieties of groups and rings. Alg. Univ. 9 (1979), 152-164.
- [4] R. McKenzie, Para primal varieties: a study of finite axiomatizability and definable principal congruences in locally finite varieties. Alg. Univ. 8 (1978), 336-348.
- [5] S. V. Polin, Identities of finite algebra. Sibirsk Mat. Z. 17(1976), 1356-1366.

University of Waterloo Waterloo, Ontario Canada