ON THE SIMPLICITY AND SUBDIRECT IRREDUCIBILITY OF BOOLEAN ULTRAPOWERS

 $\mathbf{B}\mathbf{Y}$

STANLEY BURRIS AND ERROL JEFFERS (WATERLOO, ONTARIO)

In [2], Frayne et al. gave an example of a simple group with ultrapowers which are not simple. In this paper* we will obtain necessary and sufficient conditions for a Boolean ultrapower to be simple, or subdirectly irreducible, provided the language is countable.

Let $\mathfrak{A} = \langle A, \mathscr{F} \rangle$ be an algebra, and $\mathfrak{B} = \langle B, \vee, \wedge, ', 0, 1 \rangle$ a Boolean algebra. Assume that \mathfrak{B} is complete if \mathfrak{A} is infinite. The *Boolean power* $\mathfrak{A}[\mathfrak{B}]$ has as its universe (written $|\mathfrak{A}[\mathfrak{B}]|$) the set of all mappings α of A into B such that

- (i) if $a, b \in A$, $a \neq b$, then $\alpha(a) \wedge \alpha(b) = 0$;
- (ii) $\bigvee_{a(a)} a(a) = 1$.

The fundamental operations are defined by

(iii) $f(a_0,\ldots,a_{n-1})(a) = \bigvee \{a_0(a_0) \wedge \ldots \wedge a_{n-1}(a_{n-1}) : f(a_0,\ldots,a_{n-1}) = a\}.$

Let $\mathscr U$ be an ultrafilter on a Boolean algebra $\mathfrak B$. Define the relation $\theta_{\mathscr U}(\mathfrak A)$ on $\mathfrak A[\mathfrak B]$ by

$$\theta_{\mathscr{U}}(\mathfrak{A}) = \left\{ \langle \alpha, \beta \rangle \in |\mathfrak{A}[\mathfrak{B}]|^2 \colon \bigvee_{a \in \mathcal{A}} \alpha(a) \land \beta(a) \in \mathscr{U} \right\}.$$

It can easily be shown that $\theta_{\mathscr{U}}(\mathfrak{A})$ is a congruence on $\mathfrak{A}[\mathfrak{B}]$. We denote the quotient algebra $\mathfrak{A}[\mathfrak{B}]/\theta_{\mathscr{U}}(\mathfrak{A})$ by $\mathfrak{A}[\mathfrak{B}]/\mathscr{U}$, and call it a *Boolean ultra-power* of \mathfrak{A} . For $\xi \in |\mathfrak{A}[\mathfrak{B}]|$ let $[\xi]_{\mathscr{U}}$ denote the image in $|\mathfrak{A}[\mathfrak{B}]/\mathscr{U}|$.

Remark 1. If $\mathfrak{B} \cong 2^I$ for some I (where 2 is the two-element Boolean algebra), then $\mathfrak{A}[\mathfrak{B}] \cong \mathfrak{A}[2^I] \cong \mathfrak{A}^I$. Therefore, $\mathfrak{A}[\mathfrak{B}]/\mathfrak{U} \cong \mathfrak{A}^I/\mathfrak{U}$, and the Boolean ultrapower in this case is just the familiar ultrapower.

An algebra $\mathfrak A$ is *simple* if |A| > 1 and the only congruence relations on $\mathfrak A$ are Δ_A and ∇_A , where $\Delta_A = \{\langle a, a \rangle : a \in A\}$, and $\nabla_A = A \times A$. An algebra $\mathfrak A$ is said to be (a, b)-irreducible if $a \neq b$ and every non-trivial

^{*} This research was supported by NRC Grant No. A7256.

congruence on $\mathfrak A$ identifies a and b. An algebra $\mathfrak A$ is said to be subdirectly irreducible if there are $a, b \in A$ such that $\mathfrak A$ is (a, b)-irreducible. A simplicity sentence is a first-order sentence all models of which are simple. Similarly we define a subdirect irreducibility sentence.

An ultrafilter \mathscr{U} on a Boolean algebra is said to be ω -complete if, whenever $\{x_n \colon n < \omega\} \subseteq \mathscr{U}$,

$$\bigwedge_{n<\omega}x_n\in\mathscr{U}.$$

 \mathscr{U} is said to be ω -incomplete if it is not ω -complete.

Remark 2. Principal ultrafilters on Boolean algebras are always ω -complete. Therefore, $\mathfrak B$ must be infinite in order that ω -incomplete ultrafilters may exist.

An algebra $\mathfrak A$ is *a-saturated* if every set of formulae $\{\sigma_i(x_0): i \in I\}$ in the language of $\mathfrak A$, with fewer than *a* parameters from $|\mathfrak A|$, which is finitely satisfiable in $\mathfrak A$ is also satisfiable in $\mathfrak A$.

From now on we assume that the language of $\mathfrak A$ is countable.

LEMMA 1. An ω -saturated algebra $\mathfrak A$ satisfies a simplicity (subdirect irreducibility) sentence iff $\mathfrak A$ is simple (subdirectly irreducible).

Proof. For the non-trivial direction, assume that $\mathfrak A$ does not satisfy a simplicity sentence. Taylor has shown in [4] that, for any $a, b, c, d \in A$, $(c, d) \in \theta(a, b)$ iff there exists an existential positive formula $\varphi(x, y, u, v)$ which satisfies certain conditions, and $\mathfrak A \models \varphi(a, b, c, d)$. Let $\{\varphi_i(x, y, u, v)\}_{i < \omega}$ be all such formulae in our language. From [4] one can conclude the following:

(1) \mathfrak{A} is not simple iff, for some $a, b, c, d \in A$,

$$\mathfrak{A} \models \neg \varphi_i(a, b, c, d) \& a \neq b$$
 for all $i < \omega$;

(2) for every choice of $\varphi_{i_0}(x, y, u, v), \dots, \varphi_{i_n}(x, y, u, v)$,

$$\forall xyuv(x \neq y \rightarrow \varphi_{i_0} \lor \ldots \lor \varphi_{i_n})$$

is a simplicity sentence.

Therefore, suppose that \mathfrak{A} does not satisfy a simplicity sentence. Then, for any $i_0, \ldots, i_n < \omega$,

(3) $\mathfrak{A} \models \neg \forall xyuv(x \neq y \rightarrow \varphi_{i_0} \lor \ldots \lor \varphi_{i_n}).$

Let Γ be the set of all formulae of the form

$$(x \neq y) \& (\neg \varphi_i(x, y, u, v)).$$

From (3) we see that Γ is finitely satisfiable in \mathfrak{A} . Since \mathfrak{A} is ω -saturated, and the members of Γ contain no parameters from $|\mathfrak{A}|$, Γ is satisfiable in \mathfrak{A} . (1) now implies that \mathfrak{A} is not simple. A similar proof holds for the subdirect irreducibility case.

Now we need two results in [3].

Lemma 2. If \mathscr{U} is an ω -incomplete ultrafilter on a Boolean algebra \mathfrak{B} , then $\mathfrak{A}[\mathfrak{B}]/\mathscr{U}$ is ω_1 -saturated.

LEMMA 3. Let $\xi_0, \ldots, \xi_n \in |\mathfrak{A}[\mathfrak{B}]|$ and suppose that $\sigma([\xi_0]_{\mathfrak{A}}, \ldots, [\xi_n]_{\mathfrak{A}})$ is a sentence. Then

$$\mathfrak{A}[\mathfrak{B}]/\mathscr{U} \models \sigma([\xi_0]_{\mathscr{U}}, \ldots, [\xi_n]_{\mathscr{U}})$$

iff

$$\bigvee \left\{ \xi_0(a_0) \wedge \ldots \wedge \xi_n(a_n) \colon \mathfrak{A} \models \sigma(a_0, \ldots, a_n) \right\} \in \mathscr{U}.$$

THEOREM 1. Let $\mathfrak B$ be a Boolean algebra, and $\mathfrak U$ an ultrafilter on $\mathfrak B$. Then $\mathfrak A[\mathfrak B]/\mathfrak U$ is simple (subdirectly irreducible) iff either $\mathfrak U$ is ω -complete and $\mathfrak A$ is simple (subdirectly irreducible) or $\mathfrak A$ satisfies a simplicity (subdirect irreducibility) sentence.

Proof. We will consider the case of simplicity — the subdirect irreducibility case has a similar treatment. If $\mathfrak A$ satisfies a simplicity sentence, then, since $\mathfrak A$ can elementarily be embedded in $\mathfrak A[\mathfrak B]/\mathscr U$ (see [3]), $\mathfrak A[\mathfrak B]/\mathscr U$ is simple. So assume that $\mathfrak A$ is simple and $\mathscr U$ is ω -complete. Let the formulae φ mentioned in the proof of Lemma 1 be enumerated as follows: $\varphi_0, \varphi_1, \ldots, \varphi_n, \ldots$ $(n < \omega)$. Let

$$S_i = \{ \langle a_0, a_1, c_0, c_1 \rangle \colon \mathfrak{A} \models \varphi_i(a_0, a_1, c_0, c_1) \}.$$

Let ξ , η , α , β be arbitrary elements of $|\mathfrak{A}[\mathfrak{B}]|$ such that

$$\bigvee_{a_0\neq a_1}\xi(a_0)\wedge\eta(a_1)\in\mathscr{U}$$

(i.e. $[\xi]_{\mathscr{U}} \neq [\eta]_{\mathscr{U}}$ in $|\mathfrak{U}[\mathfrak{B}]/\mathscr{U}|$). Then, since \mathfrak{U} is simple,

$$\bigvee_{i<\omega} \ \bigvee \{\xi(a_0) \land \eta(a_1) \land \alpha(c_0) \land \beta(c_1) \colon \ \langle a_0, a_1, c_0, c_1 \rangle \in S_i\} \in \mathscr{U}.$$

Hence (by ω -completeness) for some $i < \omega$ we have

$$\{\xi\left(a_{0}\right) \land \eta\left(a_{1}\right) \land a\left(c_{0}\right) \land \beta\left(c_{1}\right) \colon \left\langle a_{0},\, a_{1},\, c_{0},\, c_{1}\right\rangle \in S_{i}\} \in \mathscr{U},$$

i.e.

$$\mathfrak{A}[\mathfrak{B}]/\mathscr{U} \models \varphi_i([\xi]_{\mathscr{U}}, [\eta]_{\mathscr{U}}, [a]_{\mathscr{U}}, [\beta]_{\mathscr{U}}),$$

so $\mathfrak{A}[\mathfrak{B}]/\mathscr{U}$ is simple.

Now, assume that $\mathfrak{A}[\mathfrak{B}]/\mathfrak{U}$ is simple and \mathfrak{U} is ω -incomplete. By Lemma 2, $\mathfrak{A}[\mathfrak{B}]/\mathfrak{U}$ is ω_1 -saturated, hence ω -saturated. By Lemma 1, together with the fact that \mathfrak{A} is isomorphic to an elementary substructure of $\mathfrak{A}[\mathfrak{B}]/\mathfrak{U}$, the proof is complete.

COROLLARY. For a given algebra $\mathfrak A$ and for a given infinite Boolean algebra $\mathfrak B$, $\mathfrak A[\mathfrak B]/\mathscr U$ is simple (subdirectly irreducible) for all $\mathscr U$ iff $\mathfrak A$ satisfies a simplicity sentence (subdirect irreducibility sentence).

In view of Remark 1 the above applies to a special case of ultrapowers. Indeed, a similar result can be stated for ultraproducts.

THEOREM 2. Let \mathscr{U} be an ultrafilter on a given infinite set I, and assume that the language of our algebras \mathfrak{A}_i is countable. Then $\prod\limits_{i\in I}\mathfrak{A}_i/\mathscr{U}$ is simple (subdirectly irreducible) iff either \mathscr{U} is ω -complete and

 $\{i \in I : \mathfrak{A}_i \text{ is simple (subdirectly irreducible)}\} \in \mathscr{U}$

or, for some simplicity sentence (subdirect irreducibility sentence) σ ,

$$\{i \in I : \mathfrak{A}_i \models \sigma\} \in \mathscr{U}.$$

REFERENCES

- [1] J. L. Bell and A. B. Slomson, Models and ultraproducts, Amsterdam 1971.
- [2] T. Frayne, A. Morel and D. Scott, Reduced direct products, Fundamenta Mathematicae 51 (1962), p. 195-228.
- [3] R. Mansfield, The theory of Boolean ultrapowers, Annals of Mathematical Logic 2 (1971), p. 297-323.
- [4] W. Taylor, Residually small varieties, Algebra Universalis 2 (1972), p. 33-53.

Reçu par la Rédaction le 14. 7. 1975