The first order theory of Boolean algebras with a distinguished group of automorphisms

Stanley Burris

The theory of Boolean algebras with a sequence of distinguished ideals is known to be decidable (Rabin [4], 1969), and the theory of Boolean algebras with a distinguished subalgebra is hereditarily undecidable (Rubin [5], 1976). In this paper we look at, for a group \((G, \cdot, e)\), the class \(\mathcal{B}(G)\) of algebras \(\langle B, \lor, \land, \lnot, 0, 1, (g)_{g \in G} \rangle\) which satisfy, for \(g, h \in G\),

1. \(\langle B, \lor, \land, \lnot, 0, 1 \rangle\) is a Boolean algebra
2. \(g(x \lor y) = g(x) \lor g(y)\)
 \(g(x') = g(x)\)
 \(g(h(x)) = (g \cdot h)(x)\)
 \(e(x) = x\).

We will let \(B_G\) denote such an algebra, and \(B\) the reduct to the Boolean operations. Thus \(B_G\) is a Boolean algebra \(B\) with a group \(G\) of automorphisms acting on \(B\). The only result on the theory of \(\mathcal{B}(G)\) that we know of is due to Wolf ([7], 1975): If \(G\) is a finite solvable group then \(\mathcal{B}(G)\) has a decidable theory. His proof is based on Arens and Kaplansky’s theorem that a finite solvable group of homeomorphisms acting on the Boolean space of a countable Boolean algebra has a fundamental domain. We take another approach, introducing monadic algebras into the study, and arrive at a more general result.

THEOREM 1. Let \(G\) be a finite group. Then \(\mathcal{B}(G)\) is a finitely generated discriminator variety and consequently has a decidable first order theory.

Proof. Let us define a unary term \(c(x)\) by

\[c(x) = \bigvee_{g \in G} g(x). \]
As the identity function belongs to \(G \) it is clear that

\[
x \leq c(x),
\]

and since automorphisms are order preserving we have

\[
x \leq y \rightarrow c(x) \leq c(y).
\]

(C2)

If \(h \) is any member of \(G \) then

\[
h(c(x)) = h\left(\bigvee_{g \in G} g(x) \right)
\]

\[
= \bigvee_{g \in G} h(g(x))
\]

\[
= \bigvee_{g \in G} g(x)
\]

\[
= c(x);
\]

hence

\[
c(c(x)) = c(x)
\]

(C3)

holds. Next note that

\[
c(x \vee y) = \bigvee_{g \in G} g(x \vee y)
\]

\[
= \bigvee_{g \in G} (g(x) \vee g(y))
\]

\[
= \left(\bigvee_{g \in G} g(x) \right) \vee \left(\bigvee_{g \in G} g(y) \right),
\]

which establishes

\[
c(x \vee y) = c(x) \vee c(y).
\]

(C4)
Finally

\[c(c(x')) = c\left(\bigwedge_{g \in G} g(x') \right) \]
\[= c\left(\bigwedge_{g \in G} g(x') \right) \]
\[= \bigvee_{h \in G} h\left(\bigwedge_{g \in G} g(x') \right) \]
\[= \bigvee_{h \in G} \left(\bigwedge_{g \in G} hg(x') \right) \]
\[= \bigvee_{h \in G} \left(\bigwedge_{g \in G} g(x') \right) \]
\[= \bigwedge_{g \in G} g(x') \]

shows that we also have

\[c(c(x')) = c(x'). \quad (C5) \]

For any algebra \(B_G \) in \(\mathfrak{A}(G) \) let \(B_c \) be the corresponding algebra \((B, \vee, \wedge, ', 0, 1, c) \). Properties (C1)–(C5) say that \(B_c \) is a monadic algebra, and the closed elements of \(B_c \) are precisely the fixed points of \(G \) acting on \(B \).

Let \(+ \) be the symmetric difference operation on \(B \), that is

\[x + y = (x \wedge y') \vee (x' \wedge y). \]

The congruences of \(B_G \) are readily seen to correspond to the ideals \(I \) of \(B \) which are closed under the action of \(G \). For if \(\theta \) is a congruence of \(B_G \) then certainly \(0/\theta \) is an ideal of \(B \), and if \((a, 0) \in \theta \) then \((g(a), g(0)) = (g(a), 0) \in \theta \) for \(g \in G \), so \(0/\theta \) is closed under \(g \). Conversely given an ideal \(I \) of \(B \) closed under the action of \(G \) the corresponding congruence \(\theta \) of \(B \) defined by \((a, b) \in \theta \) iff \(a + b \in I \) is also a congruence for \(B_G \) as \((a, b) \in \theta \) implies \(a + b \in I \), so \(g(a) + g(b) = g(a + b) \in I \), hence \((g(a), g(b)) \in \theta \) for \(g \in G \).

The congruences of \(B_c \) are known (see [3]) to correspond to the ideals of \(B \) which are closed under the operation \(c \). The conditions \(h(x) \leq c(x) = \bigvee_{g \in G} g(x) \), for \(h \in G \), suffice to show that an ideal \(I \) of \(B \) is closed under \(G \) iff it is closed under \(c \), so \(B_G \) and \(B_c \) have the same congruences.
A monadic algebra is subdirectly irreducible iff the closure operator \(c \) satisfies (see [3]) the implication

\[x \neq 0 \rightarrow c(x) = 1. \]

Now observe that \(\mathcal{BA}(G) \) is locally finite as \(G \) is finite; for if \(X \subseteq B_G \in \mathcal{BA}(G) \) then the subalgebra of \(B_G \) generated by \(X \) is the subalgebra of \(B \) generated by \(X \cup \{g(x) : g \in G, x \in X\} \). Consequently if \(B_G \in \mathcal{BA}(G) \) is such that \(|B_G| > 2^{|G|} \) let \(A \) be a finite subalgebra of \(B_G \) with \(|A| > 2^{|G|} \). If \(a \) is an atom of \(A \) then \(g(a) \) is also an atom. But then \(c(a) < 1 \) as \(|\{g(a) : g \in G\}| \) is less than the number of atoms of \(A \), so \(B_G \) is not subdirectly irreducible.

Since the subdirectly irreducible members of \(\mathcal{BA}(G) \) have cardinality less than or equal to \(2^{|G|} \) it follows that \(\mathcal{BA}(G) \) is finitely generated, i.e. generated by finitely many finite algebras. Now, as in the case of monadic algebras (see [6]), the ternary term

\[t(x, y, z) = [x \land c(x + y)] \lor [z \land (c(x + y))^\prime] \]
defines the ternary discriminator on each of the subdirectly irreducible members of \(\mathcal{BA}(G) \), that is for \(a, b, c \) in \(B_G \) we have \(t(a, b, c) = a \) if \(a \neq b, c = c \) if \(a = b \). Thus \(\mathcal{BA}(G) \) is indeed a discriminator variety, and hence has a decidable first order theory (see [2]). □

Remark. If one replaces the finite group \(G \) by a finite monoid \(M \) then \(c(x) \), defined as before, still satisfies (C1)–(C4), but one can readily find a four-element member \(B_M \) of \(\mathcal{BA}(\bar{M}) \), where \(\bar{M} \) is a two-element monoid, such that (C5) fails in \(B_M \); furthermore \(B_G \) is subdirectly irreducible but not simple, so \(\mathcal{BA}(\bar{M}) \) has an hereditarily undecidable theory (by Theorem 9.1 of [1]). However for any finite monoid \(M \) the subvariety of \(\mathcal{BA}(M) \) defined by (C5) is a finitely generated discriminator variety; hence it has a decidable theory. It would be interesting to know for which finite monoids the theory of \(\mathcal{BA}(M) \) is decidable.

Now we will apply our first theorem to construct what we think is the first example of a decidable congruence distributive variety which is not a discriminator variety. From [1] we know that such a variety cannot be finitely generated.

Theorem 2. The variety \(\mathcal{BA}(\Sigma_\omega Z_2) \) is arithmetical (i.e. congruence distributive and congruence permutable), has a decidable first order theory, but is not semi-simple (i.e. not every subdirectly irreducible member is simple).

Proof. Certainly this variety is arithmetical as Boolean algebras are a reduct of
it. Now we claim that for any \(n < \omega \), the reduct of \(\mathcal{A}(\sum_n \mathbb{Z}_2) \) to the language
\(L_n = \{ \lor, \land, ', 0, 1, \{ g \}_{g \in \sum_n \mathbb{Z}_2} \} \), where we make the obvious identification of \(\sum_n \mathbb{Z}_2 \) with the subgroup of \(\sum_n \mathbb{Z}_2 \) consisting of those elements which are zero on all \(i \geq n \), is just \(\mathcal{A}(\sum_n \mathbb{Z}_2) \). The containment from left to right is clear. For the converse choose a member of \(\mathcal{A}(\sum_n \mathbb{Z}_2) \), and extend it to a member of \(\mathcal{A}(\sum_n \mathbb{Z}_2) \) by letting all the additional automorphisms \(g \), with \(g(i) = 0 \) for \(i < n \), be the identity map. As each \(\mathcal{A}(\sum_n \mathbb{Z}_2) \), \(n < \omega \), has a decidable first order theory by Theorem 1 it follows that the theory of \(\mathcal{A}(\sum_n \mathbb{Z}_2) \) is also decidable (as every reduct to a finite language is decidable).

To finish the proof let \(G = \sum_n \mathbb{Z}_2 \), and let \(B \) be the power set Boolean algebra \(P(G) \). Define the action of \(G \) on \(B \) to be

\[
g(X) = \{ g \cdot h : h \in X \}
\]

for \(g \in G \). Then the smallest non-zero ideal of \(B \) closed under \(G \) is the ideal of all finite subsets of \(G \). Thus \(B_G \) is subdirectly irreducible but not simple, and clearly \(B_G \) is in \(\mathcal{A}(G) \). \(\Box \)

The proof of Theorem 2 obviously goes through for any countable recursive abelian group of finite exponent. Thus the next result stands in sharp relief.

THEOREM 3. If \(G \) is not a locally finite group then the first order theory of \(\mathcal{A}(G) \) is hereditarily undecidable.

Proof. Let \(B \) be the power set algebra \(P(G) \), and let \(G \) act on \(P(G) \) as in the proof of the previous theorem, giving \(B_G \). Choose finitely many elements \(g_1, \ldots, g_n \in G \) such that \(g_1, \ldots, g_n \) generate an infinite subgroup \(H \) of \(G \). Let \(a = \{ g_1 \} \), and let \(b = H \). Then \(0 < a < b \), \(a \) is an atom of \(B \), and \(b \) is an infinite subset of \(G \).

Let \(\theta \) be the congruence of \(B_G \) determined by the ideal of finite subsets of \(G \) (this ideal is indeed closed under the action of \(G \)). Given an arbitrary field \(F \) of subsets of a set \(I \) and a subfield \(F_0 \) of \(F \) define the member \(B_G[F, F_0, \theta]^* \) of \(\mathcal{A}(G) \) by

\[
B_G[F, F_0, \theta]^* = \{ f \in F(B_G) : f^{-1}(e) \in F, f^{-1}(e/\theta) \in F_0, \text{ for } e \in B, \text{ and } |f(I)| < \omega \}.
\]

(This is, indeed, a subdirect power of \(B_G \).) For \(e \in B_G \) let \(\bar{e} \) denote the constant function in \(F(B_G) \) with value \(e \). Since \(a \) is an atom of \(B_G \) the interval \(\hat{F} = [0, \bar{a}] \) in \(B_G[F, F_0, \theta]^* \) is order-isomorphic to \(F \) under the map \(f \mapsto f^{-1}(a) \); and as the only elements in the interval \([0, b]\) which are fixed by all of \(g_1, \ldots, g_n \) are the elements...
0 and b, it follows that F_0 is order-isomorphic to $\tilde{F}_0 = \{ x \in [0, \tilde{b}] : g_i(x) = x, 1 \leq i \leq n \}$ under the map $f \mapsto f^{-1}(b) = f^{-1}(b/\theta)$, and hence to $\tilde{F}_0 = \{ \tilde{a} \land x : x \in [0, \tilde{b}], g_i(x) = x, 1 \leq i \leq n \}$. From this one can check that $\langle F, F_0, \subseteq \rangle \cong \langle \tilde{F}, \tilde{F}_0, \subseteq \rangle$. Thus one can easily write down a first order interpretation of the Boolean pair (F, F_0, \subseteq) into $G_\theta[F, F_0, \theta]^*$, and as the theory of such pairs is hereditarily undecidable (see [1]), so is the theory of $BA(G)$. □

An interesting problem is to determine for precisely which groups G the theory of $BA(G)$ is decidable. Of course the groups must be recursive and locally finite; if finitely presented it must have a solvable word problem. So far we do not even know if the theory of $BA(Z_\infty)$ is decidable.

REFERENCES

University of Waterloo
Waterloo, Ontario
Canada