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The first order theory of Boolean algebras with a
distinguished group of automorphisms

STANLEY BURRIS

The theory of Boolean algebras with a sequence of distinguished ideals is
known to be decidable (Rabin [4], 1969), and the theory of Boolean algebras with
a distinguished subalgebra is hereditarily undecidable (Rubin [5], 1976). In this
paper we look at, for a group (G, -, e), the class BA(G) of algebras (B, v, A,
",0,1,(g)c) Which satisfy, for g, he G,

(1) (B, v, ~,",0,1) is a Boolean algebra
(2) glxvy)=g(x)vegly)

g(x")=g(x)

g(h(x))=(g - h)(x)

e(x)=x.

We will let B; denote such an algebra, and B the reduct to the Boolean
operations. Thus B is a Boolean algebra B with a group G of automorphisms
acting on it. The only result on the theory of B4(G) that we know of is due to
Wolf ([7], 1975): If G is a finite solvable group then Bs4(G) has a decidable theory.
His proof is based on Arens and Kaplansky’s theorem that a finite solvable group
of homeomorphisms acting on the Boolean space of a countable Boolean algebra
has a fundamental domain. We take another approach, introducing monadic
algebras into the study, and arrive at a more general result.

THEOREM 1. Let G be a finite group. Then BH(G) is a finitely generated
discriminator variety and consequently has a decidable first order theory.

Proof. Let us define a unary term c(x) by

c(x)=V gx).
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As the identity function belongs to G it is clear that
x =c(x),

and since automorphisms are order preserving we have
x=sy—cx)=c(y).

If h is any member of G then

h(c(x))= h( V g(x))

geCG

=V hg(x)

geG

=V gk

geG

=c(x);

hence

Il

c(c(x))=c(x)

holds. Next note that

cxvy)=V glxvy)

geG

= VG(g(x)vg(y))
< (y, ) (y, ).
which establishes

clxvy)=c(x)ve(y).
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Finally

cle(x))=

(2, 57)
()
zf H(, £0)
N

(/\ g(x’))
/\ g(x
shows that we also have

cle(x))=c(x)". (C5)

For any algebra B; in B8(G) let B. be the corresponding algebra (B, v, A,
',0, 1, ¢). Properties (C1)—(C5) say that B, is a monadic algebra, and the closed
elements of B, are precisely the fixed points of G acting on B.

Let + be the symmetric difference operation on B, that is

x+y=(xay)vx'Ay).

The congruences of Bg are readily seen to correspond to the ideals I of B which
are closed under the action of G. For if 0 is a congruence of Bg then certainly 0/6
is an ideal of B, and if (a, 0) € 6 then (g(a), g(0)) =(g(a), 0)e 6 for ge G, so 0/6 is
closed under g. Conversely given an ideal I of B closed under the action of G the
corresponding congruence 8 of B defined by (a,b)e @ iff a+bel is also a
congruence for Bg as (a,b)e @ implies a+bel, so g(a)+g(b)=glatb)el,
hence (g(a), g(b))e 6 for ge G.

The congruences of B, are known (see [3]) to correspond to the ideals of B
which are closed under the operation ¢. The conditions h(x)=c(x)= V. g(x),
for h e G, suffice to show that an ideal I of B is closed under G iff it is closed
under ¢, so B; and B, have the same congruences.



Vol. 15, 1982 The first order theory of Boolean algebras 159

A monadic algebra is subdirectly irreducible iff the closure operator ¢ satisfies
(see [3]) the implication

x#0—c(x)=1.

Now observe that Bs4(G) is locally finite as G is finite; for if X < B; € B4(G)
then the subalgebra of B; generated by X is the subalgebra of B generated by
X U{g(x):ge G, x € X}. Consequently if B; € Bs#(G) is such that |Bg|>2'°'let A
be a finite subalgebra of B; with |A|>2/°\. If a is an atom of A then g(a) is also
an atom. But then c(a)<1 as |{g(a): g€ G}| is less than the number of atoms of
A, so Bg is not subdirectly irreducible.

Since the subdirectly irreducible members of B4(G) have cardinality less than
or equal to 2'°! it follows that Bs(G) is finitely generated, i.e. generated by
finitely many finite algebras. Now, as in the case of monadic algebras (see [6]), the
ternary term

tx, y,z)=[xAnc(x+y)lv[zalcx+y))]

defines the ternary discriminator on each of the subdirectly irreducible members
of BA(G), that is for a, b, ¢ in B; we have t(a, b, c)=a if a# b,=c if a=b. Thus
BA(G) is indeed a discriminator variety, and hence has a decidable first order
theory (see [2]). O

Remark. If one replaces the finite group G by a finite monoid M then c(x),
defined as before, still satisfies (C1)-(C4), but one can readily find a four-element
member By of Bs(M), where M is a two-element monoid, such that (C5) fails in
By; furthermore By is subdirectly irreducible but not simple, so Bs(M) has an
hereditarily undecidable theory (by Theorem 9.1 of [1]). However for any finite
monoid M the subvariety of B4(M) defined by (C5) is a finitely generated
discriminator variety; hence it has a decidable theory. It would be interesting to
know for which finite monoids the theory of B#(M) is decidable.

Now we will apply our first theorem to construct what we think is the first
example of a decidable congruence distributive variety which is not a dis-
criminator variety. From [1] we know that such a variety cannot be finitely
generated.

THEOREM 2. The variety BA(.,, Z,) is arithmetical (i.e. congruence distribu-
tive and congruence permutable), has a decidable first order theory, but is not
semi-simple (i.e. not every subdirectly irreducible member is simple).

Proof. Certainly this variety is arithmetical as Boolean algebras are a reduct of
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it. Now we claim that for any n <w, the reduct of B4}, Z,) to the language
L,={v, A, 0,1,{gecr 2z}, where we make the obvious identification of }, Z,
with the subgroup of ¥, Z, consisting of those elements which are zero on all
i=n, is just BA(, Z,). The containment from left to right is clear. For the
converse choose a member of BA(Y,Z,), and extend it to a member of
BA Y, Z,) by letting all the additional automorphisms g, with g(i)=0 for i<n,
be the identity map. As each BH(},, Z,), n <w, has a decidable first order theory
by Theorem 1 it follows that the theory of B4}, Z,) is also decidable (as every
reduct to a finite language is decidable).

To finish the proof let G =Y, Z,, and let B be the power set Boolean algebra
P(G). Define the action of G on B to be

g(X)={g - h:heX}

for g € G. Then the smallest non-zero ideal of B closed under G is the ideal of all
finite subsets of G. Thus Bg is subdirectly irreducible but not simple, and clearly
Bg is in B4(G). O

The proof of Theorem 2 obviously goes through for any countable recursive
abelian group of finite exponent. Thus the next result stands in sharp relief.

THEOREM 3. If G is not a locally finite group then the first order theory of
BA(G) is hereditarily undecidable.

Proof. Let B be the power set algebra P(G), and let G act on P(G) as in the
proof of the previous theorem, giving Bg. Choose finitely many elements
21,-..,8 €G such that g,,..., g, generate an infinite subgroup H of G. Let
a={g,}, and let b=H. Then 0<a<b, a is an atom of B, and b is an infinite
subset of G.

Let 6 be the congruence of B; determined by the ideal of finite subsets of G
(this ideal is indeed closed under the action of G). Given an arbitrary field F of
subsets of a set I and a subfield F, of F define the member Bg[F, F,, 8]* of
BA(G) by

Bg[F, Fy, 07" ={fe'(Bs):f '(e)eF, f '(e/6) € F,, for e€ B, and |f(I)| < w}.

(This is, indeed, a subdirect power of Bs.) For e € B let € denote the constant
function in '(Bg) with value e. Since a is an atom of By the interval F=[0, a] in
B[ F, F,, 0T is order-isomorphic to F under the map f—f '(a); and as the only
elements in the interval [0, b] which are fixed by all of g, ..., g, are the elements
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0 and b, it follows that F, is order-isomorphic to Fy={x€[0, b]: g(x)=x, 1<i=<n}
under the map f—f'(b)=f"'(b/6), and hence to F,={arx:xe[0,b],
g (x) = x, 1 <i=<n}. From this one can check that (F, F,, < )=(F, F,, =), Thus one
can easily write down a first order interpretation of the Boolean pair (F, F,, <)
into Gg[F, F,,, 0]%, and as the theory of such pairs is hereditarily undecidable
(see [1]), so is the theory of BA(G). O

An interesting problem is to determine for precisely which groups G the
theory of B4(G) is decidable. Of course the groups must be recursive and locally
finite; if finitely presented it must have a solvable word problem. So far we do not
even know if the theory of B4(Z,») is decidable.
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