Mailbox

A note on algebraically and existentially closed structures

STANLEY BURRIS

Algebraically and existentially closed structures can be rather elusive. In this note we look at a couple of simple properties of these structures. For K a class of first-order structures let K^{ac} be the members of K which are algebraically closed with respect to K; and let K^{ec} denote the members of K which are existentially closed with respect to K.

THEOREM 1. If K is a class of algebras and $A \in K^{ac}$ then A is congruence extensile in K.

Proof. Let $A, B \in K$ with $A \leq B$, and let θ be a congruence of A. Then let $\hat{\theta}$ be the congruence on B generated by θ . If $\langle a_1, a_2 \rangle \in \hat{\theta} \cap A \times A$ then using Mal'cev's description of the congruence generated by a set of elements it follows that there must be a primitive positive formula $\pi(x, y, x_1, y_1, \ldots, x_n, y_n)$ such that for any algebra C

$$C \models \pi(c_1, c_2, c_{11}, c_{12}, \dots, c_{n1}, c_{n2})$$
 implies $\langle c_1, c_2 \rangle \in \Theta_C(\{\langle c_{11}, c_{12} \rangle, \dots, \langle c_{n1}, c_{n2} \rangle\});$

and we have, for suitable $\langle a_{i1}, a_{i2} \rangle \in \theta$,

$$B \models \pi(a_1, a_2, a_{11}, a_{12}, \ldots, a_{n1}, a_{n2}).$$

Since $A \in K^{ac}$ it follows that

$$A \models \pi(a_1, a_2, a_{11}, a_{12}, \ldots, a_{n1}, a_{n2}),$$

and thus $\langle a_1, a_2 \rangle \in \theta$. This ensures $\theta = \hat{\theta} \cap A \times A$, so A is congruence extensile in K. \square

This research has been supported by NSERC Grant no. A7256.

Presented by Bjarni Jónsson. Received April 10, 1986. Accepted for publication in final form November 24, 1986.

The following well-known result follows.

COROLLARY 2. If each member of K can be embedded in a simple member of K then every member of K^{ac} is simple.

Now we turn to existentially closed structures. Given a primitive formula

$$\Phi(\vec{u}) = \exists \vec{v} \Big[\Phi^+(\vec{u}, \vec{v}) \land \bigwedge_{i=1}^n \neg \alpha_i(\vec{u}, \vec{v}) \Big],$$

where Φ^+ is a conjunction of atomic formulas and each α_i is atomic, let

$$\begin{split} & \Phi_0(\vec{u}) = \exists \vec{v} \, \Phi^+(\vec{u}, \, \vec{v}) \\ & \Phi_i(\vec{u}) = \exists \vec{v} \left[\Phi^+(\vec{u}, \, \vec{v}) \land \neg \alpha_i(\vec{u}, \, \vec{v}) \right], \quad 1 \le i \le n. \end{split}$$

In Macintyre's sheaf-theoretic analysis of the model companion of expansions of certain rings he made crucial use of the fact that a Boolean power of a structure using an atomless Boolean algebra would satisfy

$$\Phi(\vec{u}) \leftrightarrow \bigwedge_{i=0}^{n} \Phi_{i}(\vec{u}).$$
 (*)

THEOREM 3. Let K be a class of structures closed under finite direct products. Then $A \in K^{ec}$ implies A satisfies (*) for all primitive formulas $\Phi(\vec{u})$.

Proof. Certainly $A \models \Phi(\vec{a})$ implies $A \models \Phi_i(\vec{a})$, $0 \le i \le n$. Conversely suppose $A \models \Phi_i(\vec{a})$, $0 \le i \le n$. Then using the natural embedding α of A into A^{n+1} we see that $A^{n+1} \models \Phi(\alpha \vec{a})$, and thus $A \models \Phi(\vec{a})$. \square

Thus we see that for K closed under finite products the members of K^{ec} lie in the subclass of K defined by the $\forall\exists$ sentences from (*). Within this subclass it suffices to look at primitive formulas involving at most one negated atomic formula to test for being existentially closed.

REFERENCES

- S. Burris and H. P. Sankappanavar, A Course in Universal Algebra. GTM 78, Springer-Verlag, 1981.
- [2] A. MACINTYRE, Model completeness, in the Handbook of Mathematical Logic, ed. J. Barwise, 139-179, North-Holland, 1977.

University of Waterloo Waterloo, Ontario Canada