A Resolution Derivation

Given the collection of 8 clauses
a. $\{P, Q\}$
b. $\quad\{P, \neg S\} \quad$ c. $\quad\{Q, \neg R\} \quad$ d. $\quad\{R, \neg S\}$
e. $\{\neg P, S\}$
f. $\{\neg Q, R\}$
g. $\{\neg R, S\}$
h. $\quad\{\neg P, \neg Q\}$
fill in the reasons for the following resolution derivation:

1. $\{\neg P, S\}$	(e)	8. $\{\neg R, S\}$	(g)
2. $\{P, Q\}$	(a)	9. $\{\neg Q, S\}$	7, 8
3. $\{Q, S\}$	1,2	10. $\{Q, \neg R\}$	(c)
4. $\{P, \neg S\}$	(b)	11. $\{R, \neg S\}$	(d)
5. $\{\neg P, \neg Q\}$	(h)	12. $\{Q, \neg S\}$	10,11
6. $\{\neg Q, \neg S\}$	4, 5	13. $\{S\}$	3,9
7. $\{\neg Q, R\}$	(f)	14. $\{\neg S\}$	6,12
		15. $\}$	13,14

Is it possible to find an assignment of truth values for the propositional variables P, Q, R, S that will satisfy the original eight clauses? NO

Given the collection \mathcal{S} of 6 clauses

1. $\{P, Q\}$
2. $\{P, \neg S\}$
3. $\{Q, \neg R\}$
4. $\{R, \neg S\}$
5. $\{\neg P, S\}$
6. $\{\neg Q, R\}$
fill in the reasons for the following resolution steps:

7. $\{Q, S\}$	1,5	14. $\{\neg P, R\}$	4, 5
8. $\{P, R\}$	1,6	15. $\{Q, R\}$	1,14
9. $\{P, \neg P\}$	2, 5	16. $\{\neg P, Q\}$	3,14
10. $\{S, \neg S\}$	2,5	17. $\{R, S\}$	5,8
11. $\{Q, \neg S\}$	3,4	18. $\{Q\}$	7,11
12. $\{R, \neg R\}$	3,6	19. $\{R\}$	8,14
13. $\{Q, \neg Q\}$	3,6		

Can you obtain any other clauses by resolution?
What does this say about the satisfiability of \mathcal{S} ?

Apply the Davis-Putnam Procedure to the First Problem, showing just the \mathcal{S}_{i}^{\prime} and \mathcal{U}_{i} steps (as done for the resolution on Q below).

Resolution on Q :

(1)
$\mathcal{S}_{1}^{\prime}: \quad\{P, Q\} \quad\{P, \neg S\} \quad\{Q, \neg R\} \quad\{R, \neg S\} \quad\{\neg P, S\} \quad\{\neg Q, R\} \quad\{\neg R, S\} \quad\{\neg P, \neg Q\}$
$\begin{array}{cccc} & (1,3) & (1,4) & (2,3) \\ \mathcal{U}_{1}: & \{P, R\} & \{P, \neg P\} & \{R, \neg R\} \\ \{\neg P, \neg R\}\end{array}$

Resolution on R :

(1)
(2)
(3)
(4)
$\mathcal{S}_{2}^{\prime}:\{P, \neg S\} \quad\{R, \neg S\} \quad\{\neg P, S\} \quad\{\neg R, S\} \quad\{P, R\} \quad\{\neg P, \neg R\}$
$\mathcal{U}_{2}: \begin{array}{cccc}(1,2) & (1,4) & (2,3) & (3,4) \\ \{S, \neg S\} & \{\neg P, \neg S\} & \{P, S\} & \{P, \neg P\}\end{array}$

Resolution on P :

	(1)	(2)	(3)	(4)
$\mathcal{S}_{3}^{\prime}:$	$\{P, \neg S\}$	$\{\neg P, S\}$	$\{\neg P, \neg S\}$	$\{P, S\}$
	$(1,2)$	$(1,3)$	$(2,4)$	
$\mathcal{U}_{3}:$	$\{S, \neg S\}$	$\{\neg S\}$	$\{S\}$	

Resolution on S :

(1)
(2)
$\mathcal{S}_{4}^{\prime}: \quad\{S\} \quad\{\neg S\}$
$\mathcal{U}_{4}:\{ \}$

Given the collection of five Horn clauses

1. $\{P, \neg Q\}$
2. $\{\neg P, S\}$
3. $\{\neg R, \neg S\}$
4. $\{Q\}$
5. $\{R\}$
find all clauses that can be derived using unit resolution:

	Clause		Reason
6.	$\{P\}$		1,4
7.	$\{\neg S\}$		3,5
8.	$\{S\}$		2,6
9.	$\{\neg P$ \}		2,7
10.	$\{\neg R\}$		3,8
11.	$\{\neg Q\}$		1,9
12.	\{ \}	7, 8 (or 6	6,9 or 4

Write out the graph clauses associated with the labelled graph:

Clauses(b) $\quad\{P, Q\} \quad\{\neg P, \neg Q\}$
Clauses $(\mathrm{c}) \quad\{Q, R\} \quad\{\neg Q, \neg R\}$
Clauses(d) $\quad\{\neg R, S\} \quad\{R, \neg S\}$

Clauses(e) $\quad\{S\}$
Use Tseitin's theorem to determine if this collection of clauses is satisfiable.
ANS: As the total charge is 1 the collection is not satisfiable.

Consider the argument:

$$
\begin{array}{ll}
\mathrm{F}_{1}: & P \rightarrow \neg(Q \rightarrow R) \\
\mathrm{F}_{2}: & (Q \rightarrow P) \rightarrow(R \rightarrow S) \\
\hline \mathrm{F}: & (P \rightarrow Q) \wedge(R \rightarrow S)
\end{array}
$$

Give a conjunctive form for each of the following formulas:

F_{1}	$: \frac{(\neg P \vee Q) \wedge(\neg P \vee \neg R)}{\mathrm{F}_{2}}:$
$\neg \mathrm{F}:$	$(Q \vee \neg R \vee S) \wedge(\neg P \vee \neg R \vee S)$
$(P \vee R) \wedge(P \vee \neg S) \wedge(\neg Q \vee R) \wedge(\neg Q \vee \neg S)$	

From this derive a set \mathcal{S} of clauses such that $\mathrm{F}_{1}, \mathrm{~F}_{2} \therefore \mathrm{~F}$ is valid iff $\neg \operatorname{Sat}(\mathcal{S})$. \mathcal{S} has the clauses:

