PMath 330 Assignment $2 \quad$ Solutions

Translate each of the following four syllogisms into equational arguments.
(1) All M is P. $\quad M P^{\prime}=0$
$\frac{\text { All } \mathrm{S} \text { is M. }}{\text { All } \mathrm{S} \text { is } \mathrm{P} .} \frac{S M^{\prime}=0}{S P^{\prime}=0}$

(2) All M is P.	$M P^{\prime}=0$
No S is M.	$S M=0$
No S is P.	$S P=0$

(3) All P is M .
$P M^{\prime}=0$
$\frac{\text { No } \mathrm{M} \text { is } \mathrm{S} .}{} \begin{array}{r}\text { No } \mathrm{S} \text { is } \mathrm{P} .\end{array} \quad \begin{array}{r}M S=0 \\ =0\end{array}$
(4) No M is P. $\quad M P=0$

$\frac{\text { All S is M. }}{\text { No S is P. }} \quad$| $S M^{\prime}=0$ |
| ---: |
| $S P=0$ |

(a)

(d)

(b)

(c)

Which of the six diagrams above could qualify as Venn diagrams?
Answer:
(b), (f)

The Expansion Theorem
For the formula $F(A, B)=(A B)^{\prime}$ carry out the following computations to calculate the expansion of $F(A, B)$ on A, B :

	Full Expression	Value
$F(1,1)=$	$(11)^{\prime}$	$=0$
$F(1,0)=$	$(10)^{\prime}$	$=1$
$F(0,1)=$	$(01)^{\prime}$	$=1$
$F(0,0)=$	$(00)^{\prime}$	$=1$

Thus expanding on A, B gives: $F(A, B)=\underline{A B^{\prime} \cup A^{\prime} B \cup A^{\prime} B^{\prime}}$

For the formula $F(A, B, C)=(A B)^{\prime} \cup(B C)$ carry out the following computations to calculate the expansion of $F(A, B, C)$ on A :

	Full Expression		Simplified
$F(1, B, C)=$	$(1 B)^{\prime} \cup(B C)$	$=$	$B^{\prime} \cup C$
$F(0, B, C)=$	$(0 B)^{\prime} \cup(B C)$	$=$	1

Expanding on A gives: $F(A, B, C)=\underline{\left(B^{\prime} \cup C\right) A \cup A^{\prime}}$

For the formula $F(A, B, C)=(A B)^{\prime} \cup(B C)$ carry out the following computations to calculate the expansion of $F(A, B, C)$ on B, C :

	Full Expression		Simplified
$F(A, 1,1)=$	$(A 1)^{\prime} \cup(11)$	$=$	1
$F(A, 1,0)=$	$(A 1)^{\prime} \cup(10)$	$=$	A^{\prime}
$F(A, 0,1)=$	$(A 0)^{\prime} \cup(01)$	$=$	1
$F(A, 0,0)=$	$(A 0)^{\prime} \cup(00)$	$=$	1

Expanding on B, C gives: $F(A, B, C)=\underline{B C \cup A^{\prime} B C^{\prime} \cup B^{\prime} C \cup B^{\prime} C^{\prime}}$

Elimination

For the formula $E(A, B, C)=\left(A\left(A^{\prime} \cup B\right)^{\prime} C^{\prime}\right)^{\prime}$ carry out the following computations to eliminate A from the equation $E(A, B, C)=0$:

	Full Expression		Simplified
$E(1, B, C)=$	$\left(1\left(1^{\prime} \cup B\right)^{\prime} C^{\prime}\right)^{\prime}$	$=$	$B \cup C$
$E(0, B, C)=$	$\left(0\left(0^{\prime} \cup B\right)^{\prime} C^{\prime}\right)^{\prime}$	$=$	1

Eliminating A gives (simplify first!): $\quad B \cup C=0$

PMath 330 Assignment 2 Solutions

For the formula $E(A, B, C, D)=(A \cup B)(C \cup D)$ carry out the following computations to eliminate B, C from the equation $E(A, B, C, D)=0$:

| Full Expression | | Simplified |
| :---: | :---: | :---: | :---: |
| $E(A, 1,1, D)=(A \cup 1)(1 \cup D)$ | $=$ | 1 |
| $E(A, 1,0, D)=(A \cup 1)(0 \cup D)$ | $=$ | D |
| $E(A, 0,1, D)=(A \cup 0)(1 \cup D)$ | $=$ | A |
| $E(A, 0,0, D)=(A \cup 0)(0 \cup D)$ | $=$ | $A D$ |

Eliminating B, C gives (simplify first!): $\quad A D=0$

Fill in the following tree to give a proof of the validity of the argument using the method of Lewis Carroll. Be sure to give the number of the reason for each boxed letter.
$1 \mathrm{ACL}=0$
$2 A^{\prime} I^{\prime} M^{\prime}=0$
$3 \mathrm{GIO}^{\prime}=0$
$4 A^{\prime} C M=0$

$5 C^{\prime} I^{\prime} O^{\prime}=0$
$L O^{\prime} G=0$

4

2

