Translate each of the following four syllogisms into equational arguments.

(1) All M is P. (1)	MP'=0	(2) All M is P.	MP'=0
All S is M.	SM' = 0	No S is M.	SM = 0
All S is P.	SP' = 0	No S is P.	SP = 0
(3) All P is M.	PM' = 0	(4) No M is P. (4)	MP = 0
No M is S.	MS = 0	All S is M.	SM'=0
No S is P.	SP = 0	No S is P.	SP = 0
(a)	(b)	(c)	
(d)	(e)	(f)	

Which of the six diagrams above could qualify as **Venn diagrams**?

Answer: (b), (f)

The Expansion Theorem

For the formula F(A, B) = (AB)' carry out the following computations to calculate the expansion of F(A, B) on A, B:

	Full Expression		Value
F(1,1) =	(11)'	=	0
F(1,0) =	(10)'	=	1
F(0,1) =	(01)'	=	1
F(0,0) =	(00)'	=	1

Thus expanding on A, B gives: $F(A, B) = AB' \cup A'B \cup A'B'$

For the formula $F(A, B, C) = (AB)' \cup (BC)$ carry out the following computations to calculate the expansion of F(A, B, C) on A:

	Full Expression		Simplified
F(1, B, C) =	$(1B)' \cup (BC)$	=	$B' \cup C$
F(0, B, C) =	$(0B)'\cup(BC)$	=	1

Expanding on A gives: $F(A, B, C) = (B' \cup C)A \cup A'$

For the formula $F(A, B, C) = (AB)' \cup (BC)$ carry out the following computations to calculate the expansion of F(A, B, C) on B, C:

	Full Expression		Simplified
F(A, 1, 1) =	$(A\ 1)'\cup(1\ 1)$	=	1
F(A, 1, 0) =	$(A\ 1)'\cup(1\ 0)$	=	A'
F(A, 0, 1) =	$(A\ 0)'\cup(0\ 1)$	=	1
F(A, 0, 0) =	$(A\ 0)'\cup(0\ 0)$	=	1

Expanding on B, C gives: $F(A, B, C) = \underline{BC \cup A'BC' \cup B'C \cup B'C'}$

Elimination

For the formula $E(A, B, C) = (A(A' \cup B)'C')'$ carry out the following computations to eliminate A from the equation E(A, B, C) = 0:

	Full Expression		Simplified
$\overline{E(1,B,C)} =$	$(1(1'\cup B)'C')'$	=	$B \cup C$
E(0, B, C) =	$(0(0'\cup B)'C')'$	=	1

Eliminating A gives (simplify first!): $B \cup C = 0$

For the formula $E(A, B, C, D) = (A \cup B)(C \cup D)$ carry out the following computations to eliminate B, C from the equation E(A, B, C, D) = 0:

		Full Expression		Simplified
	E(A, 1, 1, D) =	$(A \cup 1)(1 \cup D)$	=	1
	E(A, 1, 0, D) =	$(A \cup 1)(0 \cup D)$	=	D
	E(A, 0, 1, D) =	$(A \cup 0)(1 \cup D)$	=	A
	E(A, 0, 0, D) =	$(A\cup 0)(0\cup D)$	=	AD
Eliminati	ng B, C gives (simplify f	first!): AL) =	0

Fill in the following tree to give a proof of the validity of the argument using the method of Lewis Carroll. Be sure to give the number of the reason for each boxed letter.

1	ACL	=	0
2	A´I´M	 ′=	0
3	GIO'	=	0
4	A´CM	=	0
5	C [′] I′O	/ =	0
l	_O´G	=	0

