Assignment 9

Expressing facts about N in first-order language

Give formulas or sentences to express the following:

1. The greatest common divisor of x and y is 1

Answer:
2. x is of the form 17^{n}

Answer:
3. Every prime of the form $4 n+1$ is a sum of two squares.

Answer:

Let A be the sentence $\exists x \forall y \neg(x+y=0)$.
Let B be the sentence $\forall x \exists y[(0<x) \rightarrow(0<y) \wedge(y<x)]$.

Put a checkmark in each box for which the structure above satisfies the sentence to the left:

	\mathbf{N}	\mathbf{Z}	\mathbf{Q}	\mathbf{R}
A				
B				
$\neg A \wedge \neg B$				
$A \rightarrow B$				
$A \leftrightarrow \neg B$				

Determine the binary relation defined by the formula $F(x, y)=\exists u(r x u \wedge r u y)$ on the following directed graph:

	a	b	c	d	e	f
a						
b						
c						
d						
e						
f						

Consider the following 5 sentences in the language of directed graphs:

$$
\begin{aligned}
& \mathrm{F}_{1}: \quad \forall x(r x x) \\
& \mathrm{F}_{2}: \quad \exists x \forall y(r x y) \\
& \mathrm{F}_{3}: \quad \forall x \forall y \forall z(r x y \wedge r y z \rightarrow r x z) \\
& \mathrm{F}_{4}: \quad \forall x \forall y(r x y \rightarrow \exists z(r x z \wedge r z y)) \\
& \mathrm{F}_{5}: \quad \forall x \exists y \forall z(r x y \wedge(r x z \rightarrow r y z))
\end{aligned}
$$

and the following two directed graphs:
$\mathbf{G}_{1}=(G, r)$ where $G=\{0,1\}$ and $r=\{(0,1),(1,1)\}$
$\mathbf{G}_{2}=(N, \mid)$ where $N=\{0,1,2, \ldots\}$, the non-negative integers, with the usual 'divides' relation.

Find the truth values of each of the above sentences in each of the above structures, and enter these values (0 or 1) in the table below.
[This question will be marked as follows: each correct answer is worth 1 mark; each incorrect answer receives a penalty of -1 ; each blank receives 0 marks. However, the lowest possible total mark for this question is 0 .]

	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}
G_{1}					
\mathbf{G}_{2}					

