Assignment 8

Structures

Fill in the table for the following directed graph:

	a	b	c	d	e	f
a						
b						
c						
d						
e						
f						

Draw the directed graph for the following table:
a

	a	b	c	d	e	f
a	1	1	0	0	0	0
b	0	1	1	0	0	0
c	0	0	1	1	0	0
d	0	0	0	1	1	0
e	0	0	0	0	1	1
f	0	0	0	0	0	1

b
f

C
e
d
Suppose that a first-order languge has only a constant symbol 0 , a unary function symbol f, and a binary relation symbol r.

Then the third level S_{3} of the Herbrand universe $\{0, f 0, f f 0, f f f 0\}$.
Determine the number of distinct ground clauses that one can make from the transitivity clause $\{\neg r x y, \neg r y z, r x z\}$ using S_{3}.

Answer: \qquad

Clauses

Let \mathbf{S} be the structure on $\{0,1,2\}$ with a unary operation defined by $x^{\prime}=2 x+1(\bmod$ 3), and let $a \square b$ mean that a and b have the same parity. Given the literals

$$
L_{1}=\neg\left(x^{\prime} \square y\right) \quad L_{2}=x \square y^{\prime}
$$

determine all pairs (a, b) that satisfy the clause $C=\left\{L_{1}, L_{2}\right\}$ in \mathbf{S} by filling in the following:

x	y	x^{\prime}	y^{\prime}	$x^{\prime} \square y$	$\neg\left(x^{\prime} \square y\right)$	$x \square y^{\prime}$	C
0	0						
0	1						
0	2						
1	0						
1	1						
1	2						
2	0						
2	1						
2	2						

Does \mathbf{S} satisfy the clause C ?

Opp-unification

Suppose our first-order language has a binary relation symbol r and a binary operation symbol g. Show that the two clauses $\{$ rggxyzguv, rguzgugxy\} and $\{\neg$ rgxygyz\} are oppunifiable, and find the most general opp-unifier (σ_{1}, σ_{2}).

| | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Thus $\sigma_{1}=\left(\begin{array}{l}x \\ y \\ y \\ z \\ u \\ u \\ v \\ \leftarrow\end{array} \quad\right.$ and $\quad \sigma_{2}=\left(\begin{array}{l}x \\ y \\ z \\ z \\ \\ \end{array}\right.$
)

Resolution Theorem Proving

For f, g unary function symbols and r a binary relation symbol fill in the reasons for the following resolution derivation:

1. $\{r f g x x\}$
2. $\{\neg r f f g g 0\}$
3. $\{\neg r x y, \neg r y z, r x z\}$
4. $\{\neg r x y, r f y f y\}$
5. $\{r f f g x f x\}$
6. $\{\neg r f f g g 0 y, \neg r y 0\}$
7. $\{\neg r f g 00\}$
8. $\}$

given
given
given

The following uses ground clauses from the given clauses of the previous problem. Identify the source of each ground clause (e.g., clause 3) that is an instance of one of the above given clauses, or otherwise justify the resolution step:

1. $\{r f g 00\}$
2. $\{r f g g 0 g 0\}$
3. $\{\neg r f f g g 0\}$
4. $\{\neg r f f g g 0 f g 0, \neg r f g 00, r f f g g 00\}$
5. $\{\neg r f g g 0 g 0, r f f g g 0 f g 0\}$
6. $\{\neg r f f g g 0 f g 0, \neg r f g 00\}$
7. $\{r f f g g 0 f g 0\}$
8. $\{\neg r f g 00\}$
9. $\}$

For the language $\left\{\vee, \wedge,{ }^{\prime}, 0,1\right\}$ of Boolean algebras write down the clauses AX_{\equiv}.

Convert the following equational argument into a set of clauses such that the argument is valid iff the set of clauses is not satisfiable.

$$
x \cdot y \approx u \cdot v \quad \therefore x \cdot y \approx y \cdot x
$$

And justify the derivation of the empty clause.

1.		Reflexive
2.		Symmetric
3.		Transitive
4.		Replacement for
5.		from the premiss
6.		from the conclusion
7. $\{$ \}		

