Assignment 7

Unification

In each of the following you are given a pair of terms that you are to test for being unifiable, and if they are unifiable, give the most general unifier.
(1) $x+(1+(x+z))$ and $0+(u+(v+(u+v)))$

(2) $x+(y \cdot(z+u))$ and $(u+(u \cdot v))+((v+u) \cdot u))$

(3) $u \cdot\left(x+(y \cdot(z+w))\right.$ and $u \cdot\left((u+(u \cdot v))+\left((v+u) \cdot u^{\prime}\right)\right)$

(4) $(x+(y+z))+y$ and $u+(z+(v+v))$

For the Normal Form TRS given by

$$
\mathcal{R} \approx\{f f f x \longrightarrow f f x\}
$$

find the normal forms for the following terms:

Term	Normal Form
$f x$	-
$f f y$	\square
$f f f z$	-
$f f f f u$	-
$f f f f f v$	

For the Normal Form TRS given by

$$
\mathcal{R} \approx\{f g x \longrightarrow g f x, f f x \longrightarrow f x\}
$$

find the normal forms for the following terms:

Term	Normal Form
$g f g x$	-
$g f f g y$	
$g f g f z$	\square
$f f g g u$	
$f g f g f v$	

For the Normal Form TRS given by

$$
\mathcal{R} \approx\{(x+y)+z \longrightarrow x+(y+z)\}
$$

find the normal forms for the following terms:

Term	Normal Form
$(x+x)+x$	
$(x+u)+(y+v)$	
$(x+(u+v))+(v+u)$	
$((x+w)+(x+u))+y$	
$(x+y)+((y+z)+(z+w))$	

Indicate why the TRS

$$
\mathcal{R} \approx\{x+y \longrightarrow x \cdot z\}
$$

is not terminating for the term $x+y$ by filling in a few steps of $x+y \longrightarrow \mathcal{R}$ \qquad $\longrightarrow \mathcal{R}$ \qquad $\longrightarrow \mathcal{R}$ \qquad

Indicate why the TRS

$$
\mathcal{R} \approx\{x+y \longrightarrow y+x\}
$$

is not terminating for the term $x+y$ by filling in a few steps of $x+y \longrightarrow \mathcal{R}$ \qquad $\longrightarrow \mathcal{R}$ \qquad $\longrightarrow \mathcal{R}$ \qquad

Indicate why the terminating TRS

$$
\mathcal{R} \approx\{f g x \longrightarrow f x, g f x \longrightarrow x\}
$$

is not a normal form TRS by giving two different terminal forms:

Term	Terminal Form
$f g f x$	
fgfx	

Indicate why the terminating TRS

$$
\mathcal{R} \approx\{x+(y+z) \longrightarrow z+x\}
$$

is not a normal form TRS by giving two different terminal forms:

Term	Terminal Form
$x+(u+(v+w))$	
$x+(u+(v+w))$	

Given the pair of term rewrite rules (with disjoint variables)

$$
f \underline{g x} \longrightarrow f x \quad \text { and } \quad \underline{g g f u} \longrightarrow g g u
$$

find the critical pair that results from unifying the underlined subterms:
Answer:

Given the pair of term rewrite rules (with disjoint variables)

$$
\underline{f g f f x} \longrightarrow f x \quad \text { and } \quad g g \underline{f u} \longrightarrow g f u
$$

find the critical pair that results from unifying the underlined subterms:
Answer: \qquad

Given the pair of term rewrite rules (with disjoint variables)

$$
x \cdot \underline{(y+z)} \longrightarrow(x \cdot y)+(x \cdot z) \quad \text { and } \quad \underline{(u+v)+w} \longrightarrow u+(v+w)
$$

find the critical pair that results from unifying the underlined subterms:
Answer:

