Assignment 3

Give the number of the Fundamental Equivalence (p. 44) used for each step below:

Adequate Sets of Connectives

Circle (or highlight) the formulas among $0,1, P, \neg P$ that can be represented by a formula $F(P)$ using the connectives in \mathcal{C} :

Connectives

$$
\begin{array}{rllll}
\mathcal{C}=\{\wedge, \vee\} & 0 & 1 & P & \neg P \\
\mathcal{C}=\{\wedge, 0\} & 0 & 1 & P & \neg P \\
\mathcal{C}=\{0, \leftrightarrow\} & 0 & 1 & P & \neg P \\
\mathcal{C}=\{\neg, \leftrightarrow\} & 0 & 1 & P & \neg P \\
\mathcal{C}=\{\rightarrow, 1\} & 0 & 1 & P & \neg P
\end{array}
$$

Circle (or highlight) the connectives that can be realized using the connectives in \mathcal{C} :

Connectives							
$\mathcal{C}=\{\wedge, \vee\}$	0	1	\neg	\vee	\wedge	\rightarrow	\leftrightarrow
$\mathcal{C}=\{\wedge, 0\}$	0	1	\neg	\vee	\wedge	\rightarrow	\leftrightarrow
$\mathcal{C}=\{0, \leftrightarrow\}$	0	1	\neg	\vee	\wedge	\rightarrow	\leftrightarrow
$\mathcal{C}=\{\neg, \leftrightarrow\}$	0	1	\neg	\vee	\wedge	\rightarrow	\leftrightarrow
$\mathcal{C}=\{\rightarrow, 1\}$	0	1	\neg	\vee	\wedge	\rightarrow	\leftrightarrow

Substitution/Replacement

In each of the following inferences you are to choose the best answer for how the inference could be accomplished. The four choices are: substitution, replacement, both, neither.

1. $\frac{P \sim Q}{P \wedge P \sim P \wedge Q}$
2. $\frac{P \sim Q}{Q \sim P}$
3. $\frac{P \rightarrow Q \sim \neg P \vee Q}{\neg P \vee Q \sim P \rightarrow Q}$
4. $\frac{P \rightarrow Q \sim \neg P \vee Q}{Q \rightarrow(P \rightarrow Q) \sim Q \rightarrow(\neg P \vee Q)}$
5. $\frac{P \rightarrow Q \sim \neg P \vee Q}{Q \rightarrow P \sim \neg Q \vee P}$
