Assignment 2

Translate each of the following four syllogisms into equational arguments.
(1) All M is P. $=0$

All S is M.	$=0$
All S is P.	$=0$

(2) All M is P. $\quad=0$

No S is M.	$=0$
No S is P.	$=0$

(3)

All P is M.	$=0$
No M is S.	$=0$
No S is P.	$=0$

(4)

No M is P .
$=0$

All S is M.	$=0$
No S is P.	$=0$

(a)

(b)
(c)

(d)

(e)

Which of the six diagrams above could qualify as Venn diagrams?
Answer: \qquad

The Expansion Theorem

For the formula $F(A, B)=(A B)^{\prime}$ carry out the following computations to calculate the expansion of $F(A, B)$ on A, B :

$$
\text { Full Expression } \quad \text { Value }
$$

$F(1,1)=$	$=$
$F(1,0)=$	$=$
$F(0,1)=$	$=$
$F(0,0)=$	$=$

Thus expanding on A, B gives: $F(A, B)=$
For the formula $F(A, B, C)=(A B)^{\prime} \cup(B C)$ carry out the following computations to calculate the expansion of $F(A, B, C)$ on A :

	Full Expression	Simplified
$F(1, B, C)=$		
$F(0, B, C)=$	$=$	

Expanding on A gives: $F(A, B, C)=$

For the formula $F(A, B, C)=(A B)^{\prime} \cup(B C)$ carry out the following computations to calculate the expansion of $F(A, B, C)$ on B, C :

	Full Expression	
$F(A, 1,1)=$	Simplified	
$F(A, 1,0)=$	$=$	
$F(A, 0,1)=$	$=$	
$F(A, 0,0)=$	$=$	

Expanding on B, C gives: $F(A, B, C)=$ \qquad

Elimination

For the formula $E(A, B, C)=\left(A\left(A^{\prime} \cup B\right)^{\prime} C^{\prime}\right)^{\prime}$ carry out the following computations to eliminate A from the equation $E(A, B, C)=0$:

	Full Expression	
$E(1, B, C)=$		Simplified
$E(0, B, C)=$		$=$

Eliminating A gives (simplify first!): $\quad=0$

For the formula $E(A, B, C, D)=(A \cup B)(C \cup D)$ carry out the following computations to eliminate B, C from the equation $E(A, B, C, D)=0$:

	Full Expression	
$E(A, 1,1, D)=$		Simplified
$E(A, 1,0, D)=$	$=$	
$E(A, 0,1, D)=$	$=$	
$E(A, 0,0, D)=$	$=$	

Eliminating B, C gives (simplify first!):

$$
=0
$$

Fill in the following tree to give a proof of the validity of the argument using the method of Lewis Carroll. Be sure to give the number for each boxed letter.

