
(LMCS, p. 37) II.1

PROPOSITIONAL LOGIC

The Standard Connectives:

1 true

0 false

¬ not

∧ and

∨ or

→ implies

↔ iff

Propositional Variables: P, Q, R, . . .

Using the connectives and variables we can

make propositional formulas like

((P → (Q ∨R)) ∧ ((¬Q)↔ (1 ∨ P)))

(LMCS, p. 37) II.2

Inductive [Recursive] Definition

There is a precise way to define

Propositional Formulas

• Each propositional variable P is a

propositional formula.

• 0 and 1 are propositional formulas.

• If F is a propositional formula, then (¬ F) is

a propositional formula.

• If F and G are propositional formulas, then

(F ∨ G), (F ∧ G), (F → G), and (F ↔ G) are

propositional formulas.

(LMCS, page 39) II.3

For ease of reading:

• drop the outer parentheses

• use the precedence conventions:

weaker

stronger

(LMCS, page 39) II.4

So the formula

((P → (Q ∨R)) ∧ ((¬Q)↔ (1 ∨ P)))

could be written as:

(P → Q ∨R) ∧ (¬Q ↔ 1 ∨ P)

But the expression

P ∧Q ∨R

would be ambiguous.

(LMCS) II.5

The tree of the formula

(P ∧Q) ∨ ¬ (P ∧Q)

is given by:

P Q

P Q

The subformulas of (P ∧Q) ∨ ¬ (P ∧Q) are:

(P ∧Q) ∨ ¬ (P ∧Q) P ∧Q

¬ (P ∧Q) P Q

(LMCS, p. 39) II.6

The Subformulas of F (inductive definition):

• The only subformula of a propositional

variable P is P itself.

• The only subformula of a constant c is c

itself (c is 0 or 1).

• The subformulas of ¬ F are ¬ F, and all

subformulas of F.

• The subformulas of G ¤ H are G ¤ H and all

subformulas of G and all subformulas of H.

(¤ denotes any of ∨, ∧, →, ↔.)

(LMCS, p. 40) II.7

If we assign truth values to the variables in a

propositional formula then we can calculate

the truth value of the formula.

This is based on the truth tables for the

connectives:

not

P ¬P

1 0
0 1

and

P Q P ∧Q

1 1 1
1 0 0
0 1 0
0 0 0

(LMCS, p. 40) II.8

or

P Q P ∨Q

1 1 1
1 0 1
0 1 1
0 0 0

implies

P Q P → Q

1 1 1
1 0 0
0 1 1
0 0 1

iff

P Q P ↔ Q

1 1 1
1 0 0
0 1 0
0 0 1

(LMCS) II.9

Now, given any propositional formula F we

have a truth table for F.

For (P ∨Q)→ (P ↔ Q) we have

P Q (P ∨Q)→ (P ↔ Q)

1 1 1
1 0 0
0 1 0
0 0 1

A longer version of the truth table includes

the truth tables for the subformulas:

P Q P ∨Q P ↔ Q (P ∨Q)→ (P ↔ Q)

1 1 1 1 1
1 0 1 0 0
0 1 1 0 0
0 0 0 1 1

(LMCS, p. 41) II.10

A truth evaluation e = (e1, . . . , en) for the

list P1, . . . , Pn of propositional variables is a

sequence of n truth values.

Thus e = (1,1,0,1) is a truth evaluation

for the variables P, Q, R, S.

Given a formula F(P1, . . . , Pn) let F(e)

denote the propositional formula

F(e1, . . . , en).

If the formula has four variables, say

F(P, Q, R, S), then for the e above we have

F(e) = F(1,1,0,1).

Let F̂(e) be the truth value of F at e.

(LMCS, p. 41) II.11

Example

Let F(P, Q, R, S) be the formula

¬ (P ∨R)→ (S ∧Q),

and let e be the truth evaluation (1,1,0,1)

for P, Q, R, S.

Then F(e) is ¬ (1 ∨ 0)→ (1 ∧ 1),

and F̂(e) = 1.

(LMCS, p. 43) II.12

Equivalent Formulas

F and G are (truth) equivalent, written

F ∼ G, if they have the same truth tables.

Example:

1 ∼ P ∨ ¬P

0 ∼ ¬ (P ∨ ¬P)

P ∧Q ∼ ¬ (¬P ∨ ¬Q)

P → Q ∼ ¬P ∨Q

P ↔ Q ∼ ¬ (¬P ∨ ¬Q) ∨ ¬ (P ∨Q).

We have just expressed the standard

connectives in terms of ¬ , ∨.

(LMCS, p. 42, 43) II.13

Proving Formulas are Equivalent

P Q P → Q ¬Q → ¬P ¬P ∨Q

1 1 1 1 1
1 0 0 0 0
0 1 1 1 1
0 0 1 1 1

P Q R P ∧ (Q ∨R) (P ∧Q) ∨ (P ∧R)

1 1 1 1 1
1 1 0 1 1
1 0 1 1 1
1 0 0 0 0
0 1 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

(LMCS, p. 44) II.14

Fundamental (Truth) Equivalences

1. P ∨ P ∼ P idempotent

2. P ∧ P ∼ P idempotent

3. P ∨Q ∼ Q ∨ P commutative

4. P ∧Q ∼ Q ∧ P commutative

5. P ∨ (Q ∨R) ∼ (P ∨Q) ∨R associative

6. P ∧ (Q ∧R) ∼ (P ∧Q) ∧R associative

7. P ∧ (P ∨Q) ∼ P absorption

8. P ∨ (P ∧Q) ∼ P absorption

9. P ∧ (Q ∨R) ∼ (P ∧Q) ∨ (P ∧R) distributive

10. P ∨ (Q ∧R) ∼ (P ∨Q) ∧ (P ∨R) distributive

(LMCS, p. 44) II.15

11. P ∨ ¬P ∼ 1 excluded middle

12. P ∧ ¬P ∼ 0

13. ¬¬P ∼ P

14. P ∨ 1 ∼ 1

15. P ∧ 1 ∼ P

16. P ∨ 0 ∼ P

17. P ∧ 0 ∼ 0

18. ¬ (P ∨Q) ∼ ¬P ∧ ¬Q De Morgan’s law

19. ¬ (P ∧Q) ∼ ¬P ∨ ¬Q De Morgan’s law

20. P → Q ∼ ¬P ∨Q

21. P → Q ∼ ¬Q → ¬P

(LMCS, p. 44) II.16

22. P → (Q → R) ∼ (P ∧Q)→ R

23. P → (Q → R) ∼ (P → Q)→ (P → R)

24. P ↔ P ∼ 1

25. P ↔ Q ∼ Q ↔ P

26. (P ↔ Q)↔ R ∼ P ↔ (Q ↔ R)

27. P ↔ ¬Q ∼ ¬ (P ↔ Q)

28. P ↔ (Q ↔ P) ∼ Q

29. P ↔ Q ∼ (P → Q) ∧ (Q → P)

30. P ↔ Q ∼ (P ∧Q) ∨ (¬P ∧ ¬Q)

31. P ↔ Q ∼ (P ∨ ¬Q) ∧ (¬P ∨Q)

(LMCS) II.17

A Few More Useful Equivalences

1↔ P ∼ P

0↔ P ∼ ¬P

1→ P ∼ P

P → 1 ∼ 1

0→ P ∼ 1

P → 0 ∼ ¬P

(LMCS, p. 45) II.18

Tautologies and Contradictions

F is a tautology if F̂(e) = 1 for every truth

evaluation e. This means the truth table for

F looks like: F

1
...
1

Theorem

F and G are truth equivalent iff the formula

F ↔ G is a tautology.

F is a contradiction if F̂(e) = 0 for every

truth evaluation e. This means the truth

table looks like: F

0
...
0

(LMCS, p. 46) II.19

Substitution means uniform substitution of

formulas for variables.

F(H1, . . . , Hn) means:

substitute Hi for each occurrence of Pi in

F(P1, . . . , Pn).

Example

Thus if F(P, Q) is P → (Q → P) then

F(¬P ∨R,¬P) is ¬P ∨R → (¬P → ¬P ∨R).

(LMCS, p. 46) II.20

Substitution Theorem

From

F(P1, . . . , Pn) ∼ G(P1, . . . , Pn),

we can conclude

F(H1, . . . , Hn) ∼ G(H1, . . . , Hn).

Example

From the DeMorgan law

¬ (P ∨Q) ∼ ¬P ∧ ¬Q

we have:

¬ ((P → R) ∨ (R ↔ Q)) ∼ ¬ (P → R) ∧ ¬ (R ↔ Q).

(LMCS, p. 47) II.21

[Some Exercises]

Which of the following propositional formulas

are substitution instances of the formula

P → (Q → P) ?

If a formula is indeed a substitution instance,

give the formulas substituted for P, Q.

¬R → (R → ¬R)

¬R → (¬R → ¬R)

¬R → (¬R → R)

(P ∧Q → P)→ ((Q → P)→ (P ∧Q → P))

((P → P)→ P)→ ((P → (P → (P → P)))) ?

(LMCS, p. 49) II.22

Replacement

If F has a subformula G, say

GF =

then, when we replace the given occurrence

of G by another formula H, the result looks

like

 HF =

Some like to call this substitution as well.

But then there are two kinds of substitution!

For clarity it is better to call it replacement.

(LMCS, p. 49) II.23

Example

If we replace the second occurrence of P ∨Q

in the formula F

(P ∨Q)→ (R ↔ (P ∨Q))

by the formula Q ∨ P then we obtain the

formula F′

(P ∨Q)→ (R ↔ (Q ∨ P))

(LMCS, p. 49) II.24

Replacement Theorem

From G ∼ H

we can conclude F (· · ·G · · ·) ∼ F (· · ·H · · ·).

Example

From

¬ (Q ∨R) ∼ ¬Q ∧ ¬R

we obtain, by replacement,

(P → ¬ (Q ∨R)) ∧ ¬Q ∼ (P → ¬Q ∧ ¬R) ∧ ¬Q

(LMCS, p. 51) II.25

Simplification

Simplify the formula

(P ∧Q) ∨ ¬ (¬P ∨Q).

Solution:

(P ∧Q) ∨ ¬ (¬P ∨Q) ∼ (P ∧Q) ∨ (¬¬P ∧ ¬Q)

∼ (P ∧Q) ∨ (P ∧ ¬Q)

∼ P ∧ (Q ∨ ¬Q)

∼ P ∧ 1

∼ P

Because ∼ is an equivalence relation we have

(P ∧Q) ∨ ¬ (¬P ∨Q) ∼ P

(LMCS, p. 52) II.26

Adequate Set of Connectives

Means: Every truth table is the truth table of

some propositional formula using the given

set of connectives.

The standard connectives are adequate.

Example Find F(P, Q, R) such that

P Q R F

1 1 1 0
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

Answer:

(P ∧ Q ∧ ¬R) ∨ (P ∧ ¬Q ∧ R) ∨

(¬P ∧ Q ∧ R)∨ (¬P ∧ ¬Q ∧ ¬R)

(LMCS, p. 53) II.27

Since we only need the connectives ∨,∧,¬

to make a formula for any given table it

follows that the set of connectives

{∨,∧,¬}

is adequate.

From the DeMorgan Laws we have

P ∨Q ∼ ¬ (¬P ∧ ¬Q)

P ∧Q ∼ ¬ (¬P ∨ ¬Q)

so we see that both

{∧,¬} and {∨,¬}

are adequate sets of connectives.

(LMCS, p. 53) II.28

And there are other pairs of standard

connectives, such as {¬,→} (see p. 42 of

LMCS), that are adequate.

But no single standard connective is

adequate.

How can we show this?

The strategy is to show that for each

standard connective there is some other

standard connective that cannot be expressed

using the first standard connective.

(LMCS, p. 53) II.29

If we have a single constant 0 or 1 then we

cannot express ¬.

If we have just ¬ we cannot express ∧.

And for each of the standard binary

connectives ¤ we claim that it is not

possible to express negation.

That is, it is not possible to find a formula

F(P) using just the connective ¤ that is

equivalent to ¬P .

What can we express with F(P) using only a

single connective ¤?

(LMCS, p. 55) II.30

For ¤ = ∧ ∨ → ↔

F(P) ∼ P P 1 or P 1 or P

For example, if we start with →, then any

formula F(P) in one variable P , using just

the connective →, is equivalent to either 1 or

P .

We prove this using a variation on Induction.

The simplest formula F(P) is just the

variable P , and P is equivalent to P .

We also have a formula F(P) that is P → P .

This is equivalent to 1.

(LMCS, p. 55) II.31

Can we find a F(P) that is not equivalent to

P or 1?

Suppose F(P) is a smallest possible formula

that is “ equivalent to something else”.

Then F(P) must look like G(P)→ H(P).

But then G(P) and H(P) are too small to

be “equivalent to something else”.

So they are each equivalent to one of P or 1.

(LMCS, p. 55) II.32

This gives four cases to consider:

G(P) H(P) F(P) = G(P)→ H(P)

P P 1
P 1 1
1 P P

1 1 1

So we see that F (P) cannot be “something

else”.

In particular no F (P) can be ¬P .

(LMCS, p. 53) II.33

Single Binary Connectives that are Adequate

The first, f, was found by Schröder in 1880:

P Q P fQ

1 1 0
1 0 0
0 1 0
0 0 1

Then

1 ∼ (P f (P f P))f (P f (P f P))

0 ∼ P f (P f P)

¬P ∼ P f P

etc.

P ↔ Q ∼ ((P f P)fQ)f ((Qf P)f P).

(LMCS, p. 54) II.34

The second, |, was found by Sheffer in 1913,

and is the famous Sheffer stroke:

P Q P |Q
1 1 0
1 0 1
0 1 1
0 0 1

To show that this connective is adequate all

we need to do is to express a known

adequate set of connectives in terms of it.

For the adequate set {¬,∨} we have:

¬P ∼ P |P

P ∨Q ∼ (P |P)|(Q|Q)

(LMCS, p. 59) II.35

Associativity and Parentheses

Since the associative law holds for ∨ and ∧

it is common practice to drop parentheses in

situations such as

P ∧ ((Q ∧R) ∧ S),

yielding

P ∧Q ∧R ∧ S.

Likewise we like to write

P ∨Q ∨R ∨ S,

instead of

(P ∨Q) ∨ (R ∨ S).

(LMCS, p. 59) II.36

Disjunctive and Conjunctive Forms

Any formula F can be transformed into a

disjunctive form, e.g.,

P ↔ Q ∼ (P ∧Q) ∨ (¬P ∧ ¬Q).

If each variable or its negation appears in

each conjunction then we call it a disjunctive

normal form. Such conjunctions are

DNF-constituents.

The above disjunctive form is actually a

disjunctive normal form, with the

DNF-constituents

P ∧Q and ¬P ∧ ¬Q.

(LMCS, p. 59) II.37

The formula tree for the right-hand side

(P ∧Q) ∨ (¬P ∧ ¬Q)

is given by:

P Q

P Q

Notice that the negations are all next to the

leaves of the tree.

And there is no ∧ above a ∨.

(LMCS, p. 59) II.38

Being in disjunctive form really means:

• negations only appear next to variables, and

• no ∧ is above a ∨ .

So we can have degenerate cases of the

disjunctive form:

Here are three examples:

P P ∨ ¬Q P ∧ ¬Q

(LMCS, p. 59) II.39

And we have conjunctive forms such as

P ↔ Q ∼ (¬P ∨Q) ∧ (P ∨ ¬Q).

The formula tree for the right-hand side is

given by:

P

PQ

Q

Being in conjunctive form means:

• negations only appear next to variables, and

• no ∨ is above a ∧.

(LMCS, p. 59) II.40

Simple Cases:

F (P, Q) = P ∨ ¬Q

is in both disjunctive and conjunctive form.

It is in conjunctive normal form, but not in

disjunctive normal form.

The set of variables used affects the

normal forms.

Let F(P, Q) be ¬P . The normal forms

(with respect to P, Q) are:

DNF: (¬P ∧Q) ∨ (¬P ∧ ¬Q)

CNF: (¬P ∨Q) ∧ (¬P ∨ ¬Q)

(LMCS, p. 60) II.41

Rewrite Rules to Obtain Normal Forms

To transform F into a disjunctive form apply

the following:

F → G Ã ¬ F ∨ G

F ↔ G Ã (F → G) ∧ (G → F)

¬ (F ∨ G) Ã ¬ F ∧ ¬G

¬ (F ∧ G) Ã ¬ F ∨ ¬G

¬¬ F Ã F

F ∧ (G ∨ H) Ã (F ∧ G) ∨ (F ∧ H)

(F ∨ G) ∧ H Ã (F ∧ H) ∨ (G ∧ H).

These rules are applied until no further

applications are possible.

(LMCS, p. 60) II.42

Example

P ∧ (P → Q) Ã P ∧ (¬P ∨Q)

Ã (P ∧ ¬P) ∨ (P ∧Q)

Now this formula clearly gives a disjunctive

form, but not a normal form. We can simplify

it considerably, but to do this we need to

invoke additional rewrite rules.

More Rewrite Rules:

0 ∧ F Ã 0

¬1 Ã 0

etc.

· · · ∧ F ∧ · · · ∧ ¬ F ∧ · · · Ã 0

· · · ∧ F ∧ · · · ∧ F ∧ · · · Ã · · · ∧ F ∧ · · ·

(LMCS, p. 62) II.43

Applying these additional rewrite rules we

have:

(P ∧ ¬P) ∨ (P ∧Q) Ã 0 ∨ (P ∧Q)

Ã P ∧Q

One more rule is needed, to handle the

exceptional case that the above rules reduce

the formula to simply the constant 1.

In this case we rewrite 1 as a join of all the

DNF–constituents.

(LMCS, p. 62) II.44

Sometimes, after applying all these rules, one

still doesn’t have a disjunctive normal form.

Example

If we start with (P ∧Q) ∨ ¬P then none of

the rules apply.

To get a DNF we need to replace ¬P with

(¬P ∧Q) ∨ (¬P ∧ ¬Q).

Then

(P ∧Q) ∨ ¬P ∼ (P ∧Q) ∨ (¬P ∧Q) ∨ (¬P ∧ ¬Q).

Now we have a disjunctive normal form.

(LMCS, p. 62) II.45

The second method to find normal forms is

to use truth tables.

The rows of the truth table of F yield the

constituents of F according to

• the DNF–constituents are in 1–1

correspondence with the lines of the truth

table for which F is true.

• The CNF–constituents are in 1–1

correspondence with the lines of the truth

table for which F is false.

(LMCS, p. 63) II.46

Example

The DNF– and CNF–constituents for the

rows of a truth table in the variables P, Q, R:

P Q R DNF–constituent CNF–constituent

1 1 1 P ∧Q ∧R ¬P ∨ ¬Q ∨ ¬R

1 1 0 P ∧Q ∧ ¬R ¬P ∨ ¬Q ∨R

etc.

0 0 0 ¬P ∧ ¬Q ∧ ¬R P ∨Q ∨R

A DNF constitutent is true only for its row.

A CNF constitutent is false only for its row.

(LMCS, p. 63) II.47

Example

Using truth tables to find the disjunctive

normal form.

P Q (¬P ∨Q) ∧ ¬P

1 1 0
1 0 0
0 1 1
0 0 1

The disjunctive normal form for

(¬P ∧Q) ∨ ¬P

is

(¬P ∧Q) ∨ (¬P ∧ ¬Q).

(LMCS, p. 63) II.48

Example

Using truth tables to find the

conjunctive normal form:

P Q (P ↔ Q) ∨ (P → ¬Q)

1 1 1
1 0 0
0 1 1
0 0 1

The conjunctive normal form for

(P ↔ Q) ∨ (P → ¬Q)

is

¬P ∨Q.

(LMCS, p. 64) II.49

Unique Normal Forms

A formula has many disjunctive forms, and

many conjunctive forms.

But it has only one disjunctive normal

form.

And only one conjunctive normal form.

(Since normal forms are determined by the

truth table of a formula.)

Two formulas are equivalent iff they have

the same disjunctive (or conjunctive)

normal forms.

(LMCS, p. 66) II.50

A (logical) argument draws conclusions

from premisses.

What constitutes a valid argument?

Definition An argument F1, · · · , Fn ∴ F is

valid (or correct) provided:

the conclusion is true whenever the premisses

are true, i.e.,

F1 · · · Fn F

e 1 · · · 1
implies

F1 · · · Fn F

e 1 · · · 1 1

(LMCS, p. 66) II.51

Proposition

F1, · · · , Fn ∴ F

is valid iff

F1 ∧ · · · ∧ Fn → F

is a tautology.

Both of these say that F is true whenever

F1, . . . , Fn are true.

(LMCS, p. 67) II.52

Example

(Chrysippus: A good hunting dog has basic

skills in reasoning.)

When running after a rabbit, the dog

found that the path suddenly split in

three directions.

The dog sniffed the first path and

found no scent;

then it sniffed the second path and

found no scent;

then, without bothering to sniff the

third path, it ran down that path.

(LMCS, p. 67) II.53

We can summarize the canine’s fine reasoning

as follows:

• The rabbit went this way or that way or the

other way.

• Not this way.

• Not that way.

• Therefore the other way.

We can express the argument as

P ∨Q ∨R

¬P

¬Q

∴ R.

(LMCS, p. 67) II.54

For the argument

P ∨Q ∨R

¬P

¬Q

∴ R

the validity can easily be checked using a

truth table:

P Q R P ∨Q ∨R ¬P ¬Q R

1 1 1 1 0 0 1
1 1 0 1 0 0 0
1 0 1 1 0 1 1
1 0 0 1 0 1 0
0 1 1 1 1 0 1
0 1 0 1 1 0 0
0 0 1 1 1 1 1
0 0 0 0 1 1 0

(LMCS, p. 67) II.55

Satisfiable

A set S of propositional formulas is

satisfiable if there is a truth evaluation e

for the variables in S that makes every

formula in S true.

We say that e satisfies S .

The expression Sat(S) means that S is

satisfiable;

the expression ¬ Sat(S) means that S is

not satisfiable.

(LMCS, p. 67) II.56

Thus a finite set {F1, . . . , Fn} of formulas is

satisfiable iff when we look at the combined

truth table for the Fi we can find a line that

looks as follows:

P1 · · · Pm F1 · · · Fn

e1 · · · em 1 · · · 1

(LMCS, p. 68) II.57

Example

Let S be the set of formulas

{P → Q, Q → R, R → P}.

The combined truth table is:

P Q R P → Q Q → R R → P

1. 1 1 1 1 1 1
2. 1 1 0 1 0 1
3. 1 0 1 0 1 1
4. 1 0 0 0 1 1
5. 0 1 1 1 1 0
6. 0 1 0 1 0 1
7. 0 0 1 1 1 0
8. 0 0 0 1 1 1

Thus S is satisfiable.

(LMCS, p. 68) II.58

Example

Let S be the set of formulas

{P ↔ ¬Q, Q ↔ R, R ↔ P}.

The combined truth table is:

P Q R P ↔ ¬Q Q ↔ R R ↔ P

1. 1 1 1 0 1 1
2. 1 1 0 0 0 0
3. 1 0 1 1 0 1
4. 1 0 0 1 1 0
5. 0 1 1 1 1 0
6. 0 1 0 1 0 1
7. 0 0 1 0 0 0
8. 0 0 0 0 1 1

Thus S is not satisfiable.

(LMCS, p. 69) II.59

Valid Arguments

and

Not Satisfiable Formulas

The following assertions are equivalent:

• F1, · · · , Fn ∴ F is valid.

• {F1, · · · , Fn,¬ F} is not satisfiable.

• F1 ∧ · · · ∧ Fn → F is a tautology.

• F1 ∧ · · · ∧ Fn ∧ ¬ F is not satisfiable.

Each of these says that F is true whenever

F1, . . . , Fn are true.

(LMCS, p. 69) II.60

From a combined truth table such as

P Q R F1 F2 F3 F4

1. 1 1 1 1 1 0 1
2. 1 1 0 0 0 1 0
3. 1 0 1 1 1 0 0
4. 1 0 0 0 0 0 0
5. 0 1 1 1 0 0 0
6. 0 1 0 0 0 1 1
7. 0 0 1 1 1 0 1
8. 0 0 0 0 0 0 1

we can read off information about

• normal forms • equivalence

• tautologies • contradictions

• satisfiable • valid arguments

(LMCS, p. 72) II.61

Example (translation into propositional logic)

1. Good-natured tenured

mathematics professors are dynamic .

A ∧B ∧ C → D

2. Grumpy student advisors

play slot machines .

¬A ∧M → L

(LMCS, pp. 72-73) II.62

A Tufa Problem

The island of Tufa has two tribes, the Tu’s

who always tell the truth, and the Fa’s who

always lie.

A traveler encountered three residents A,B,

and C of Tufa, and each made a statement

to the traveler:

A said, “ A or B tells the truth if C lies.”

B said, “If A or C tell the truth, then it is

not the case that exactly one of us is telling

the truth.”

(LMCS) II.63

C said, “ A or B is lying iff A or C is telling

the truth.”

Determine, as best possible, which tribes A,

B, and C belong to?

Let A be the statement “A is telling the

truth” (and thus A is a Tu), etc.

Then in symbolic form we have:

A says: ¬C → (A ∨B)

B says: A ∨ C →

¬ ((¬A∧¬B∧C)∨(¬A∧B∧¬C)∨(A∧¬B∧¬C))

C says: ¬ (A ∧B)↔ (A ∨ C).

(LMCS) II.64

The following statements are given to be

true:

A ↔ (¬C → (A ∨B))

B ↔ (A ∨ C → ¬ ((¬A ∧ ¬B ∧ C) ∨ (¬A ∧B ∧

¬C) ∨ (A ∧ ¬B ∧ ¬C)))

C ↔ (¬ (A ∧B)↔ (A ∨ C)).

Letting these three propositional formulas be

F, G, and H, we have the combined truth

table:

(LMCS) II.65

A B C F G H

1. 1 1 1 1 1 0
2. 1 1 0 1 1 1
3. 1 0 1 1 0 0
4. 1 0 0 1 1 1
5. 0 1 1 0 1 0
6. 0 1 0 0 1 0
7. 0 0 1 0 1 1
8. 0 0 0 1 0 1

From lines 2 and 4 we see that A must be a

Tu and C must be a Fa.

We do not know which tribe B belongs to.

(LMCS, Appendix D) II.66

The FÃL Propositional Logic

Propositional Variables: P, Q, . . .

Connectives: ¬ ,→

Rule of inference:
F, F → G

G

(modus ponens)

Axiom schemata:

A1: F → (G → F)

A2: (F → (G → H))→ ((F → G)→ (F → H))

A3: (¬ F → ¬G)→ (G → F)

(LMCS, Appendix D) II.67

S ` F [read: F can be derived from S]

means there is a sequence of formulas

F1, . . . , Fn ,

with F = Fn, such that for each i

• either Fi is an axiom,

• or Fi is in S ,

• or Fi is obtained from two previous

Fjs by an application of modus ponens.

F1, . . . , Fn is an S–derivation (or S–proof)

of F.

A Ø–derivation is simply called a derivation.

(LMCS, Appendix D) II.68

Note: The axioms are tautologies.

The proof system is sound.

(If ` F then F is a tautology.)

Now we start to prove completeness.

(If F is a tautology then ` F.)

First two lemmas that are not in the text.

Lemma A

If F is an axiom then S ` F.

Lemma B

If F ∈ S then S ` F.

(LMCS, Appendix D) II.69

Lemma D.0.5 ` F → F .

Proof

1. F → ((F → F)→ F) A1

2. (F → ((F → F)→ F))→ ((F → (F → F))→ (F → F)) A2

3. (F → (F → F))→ (F → F) MP 1,2

4. F → (F → F) A1

5. F → F. MP 3,4

(LMCS, Appendix D) II.70

Lemma D.0.6

If S ` F and S ` F → G , then S ` G.

Proof

Let F1, . . . , Fm be an S–derivation of F, and

let Fm+1, . . . , Fn be an S–derivation of

F → G.

Then F1, . . . , Fn, G is an S–derivation of G.

Lemma D.0.7

If S ` F and S ⊆ S ′, then S ′ ` F.

Proof

Let F1, . . . , Fn be an S–derivation of F.

Then it is also an S ′–derivation of F.

(LMCS, Appendix D) II.71

Lemma D.0.8

[Deduction Lemma / Herbrand 1930]

S ∪ {F} ` G iff S ` F → G.

Proof

The direction (⇐) follows from taking a

derivation F1, . . . , Fn of F → G from S and

attaching the two formulas F, G to the end

of it.

The other direction follows by an induction

proof on the length of a derivation of G

from S ∪ {F}. (See the text.)

(LMCS, Appendix D) II.72

Lemma D.0.9

If S ` F → G and S ` G → H , then

S ` F → H.

Proof

1. S ` F → G given

2. S ` G → H given

3. S ∪ {F} ` G 1 D.0.8

4. S ∪ {F} ` G → H 2 D.0.7

5. S ∪ {F} ` H 3,4 D.0.6

6. S ` F → H. 5 D.0.8

(LMCS, Appendix D) II.73

A list of other lemmas needed:

Lemma D.0.10 If S ` F → (G → H) and

S ` G, then S ` F → H .

Lemma D.0.11 ` ¬ F → (F → G).

Lemma D.0.12 ` ¬¬ F → F .

Lemma D.0.13 ` F → ¬¬ F.

Lemma D.0.14 ` (F → G)→ (¬G → ¬ F).

Lemma D.0.15 ` F → (¬G → ¬ (F → G)).

Lemma D.0.16 If S ∪ {F} ` G and

S ∪ {¬ F} ` G, then S ` G.

(LMCS, Appendix D) II.74

Let F(P1, . . . , Pn) be a propositional formula.

Let P̃1, . . . , P̃n be such that P̃i ∈ {Pi,¬Pi}.

Let e be a truth evaluation such that

e(P̃i) = 1, for i ≤ n.

Then let F̃ =

{
F if e(F) = 1
¬ F if e(F) = 0.

Lemma [Kalmar]

Let F, P̃1, . . . , P̃n, F̃ and e be above. Then

P̃1, . . . , P̃n ` F̃.

Proof. (See Text.)

(LMCS, Appendix D) II.75

Theorem [Completeness]

` F if F is a tautology.

Proof

Let F(P1, . . . , Pn) be a tautology. Then for

any P̃1, . . . , P̃n we have F̃ = F.

Thus

1. P̃1, . . . , P̃n−1, Pn ` F Kalmar

2. P̃1, . . . , P̃n−1,¬Pn ` F Kalmar

3. P̃1, . . . , P̃n−1 ` F D.0.16

Continuing, we have ` F.

(LMCS, p. 98) II.76

Resolution is a rule of inference used to show

a set of propositional formulas of the form

P̃1 ∨ · · · ∨ P̃m (?)

is not satisfiable.

Here P̃i means Pi or ¬Pi, where Pi is a

propositional variable.

A Justification for Using Resolution:

We know that an argument

F1, · · · , Fn ∴ F

is valid iff

F1 ∧ · · · ∧ Fn ∧ ¬ F (??)

is not satisfiable.

(LMCS, p. 98) II.77

If we put each of the Fi as well as ¬ F into

conjunctive form then we can replace (??)

by a collection of formulas of the form (?).

Thus saying that an argument is valid is

equivalent to saying that a certain set of

disjunctions of variables and negated variables

is not satisfiable.

(LMCS, p. 98) II.78

Example

To determine the validity of the argument

P → Q, ¬P → R, Q ∨R → S ∴ S

we consider the satisfiability of

{P → Q, ¬P → R, Q ∨R → S, ¬S}.

Converting this into the desired disjunctions

gives

{¬P ∨Q, P ∨R, ¬Q ∨ S, ¬R ∨ S, ¬S}.

It is easily checked that this is not satisfiable,

so the propositional argument is valid.

(LMCS, p. 101) II.79

Literals

P and ¬P are called literals.

The complement L of a literal L is defined

by:

P = ¬P and ¬P = P

P is a positive literal.

¬P is a negative literal.

(LMCS, p. 101) II.80

Clauses

Finite sets {L1, . . . , Lm} of literals are called

clauses.

• A clause {L1, · · · , Ln} is satisfiable (by e)

if L1 ∨ · · · ∨ Ln is satisfiable (by e).

• By definition the empty clause { } is not

satisfiable.

• A set S of clauses is satisfiable if there is

a truth evaluation e that satisfies each

clause in S.

(LMCS, p. 102) II.81

Resolution

Resolution is the following rule of inference:

C ∪ {L}, D ∪ {L}

C ∪ D

Example (of resolution):

{P,¬Q, R}, {Q, R,¬S}

{P, R,¬S}

Completeness and Soundness

of Resolution

A set S of clauses is not satisfiable iff one

can derive the empty clause from S using

resolution.

(LMCS, p. 102) II.82

Example

A resolution derivation of the empty clause

from

{P, Q} {P,¬Q} {¬P, Q} {¬P,¬Q}

is

1. {P, Q} given

2. {P,¬Q} given

3. {P} resolution 1,2

4. {¬P, Q} given

5. {¬P,¬Q} given

6. {¬P} resolution 4,5

7. { } resolution 3,6

This set of clauses is not satisfiable.

(LMCS, p. 103) II.83

For the derivation in the previous example we

could use the following picture to indicate the

resolution steps:

{ }

,{ } ,{ },{

{{ } }

} , }{

P

QP P Q P Q P Q

P

(LMCS) II.84

Example

S = { {P, Q}, {¬P, R}, {¬Q,¬R}, {¬R, S} }

1. {P, Q} given

2. {¬P, R} given

3. {¬Q,¬R} given

4. {¬R, S} given

5. {Q, R} 1,2

6. {P,¬R} 1,3

7. {¬P,¬Q} 2,3

8. {¬P, S} 2,4

9. {Q,¬Q} 1,7

10. {P,¬P} 1,7

11. {Q, S} 1,8

12. {R,¬R} 2,6

No further clauses can be derived by

resolution.

Thus the empty clause cannot be derived, so

S is satisfiable.

(LMCS) II.85

A diagram of the resolution steps in the

previous example:

{ P, Q } { P, R } { Q, R }

{ P, Q }

{ R, S }

{ P, S }

{ P, P }

{ Q, Q }{ R, R }

{ Q, R }

{ Q, S }

{ P, R }

(LMCS, p. 103) II.86

WARNING

Every term several students will try cancelling

two or more complementary literals, as in the

following:

{ P, Q }

{ }

{ P, Q }

This is not correct. Resolution preserves

satisfiability!

(LMCS, p. 104) (Modifying Resolution) II.87

The Davis-Putnam Procedure (DPP)

• Delete all clauses that are “tautologies”.

• Select a variable.

• Add all resolvents over that variable.

• Then delete all clauses with that variable.

Iterate until there are no variables left.

If you end up with NO CLAUSES left then

the original set is satisfiable.

Otherwise you must end up with just the

EMPTY CLAUSE, and then the original set

is not satisfiable.

(LMCS, p. 104) II.88

Example

S : {P, Q} {P,¬Q} {¬P, Q} {¬P,¬Q}

Eliminating P gives {Q}, {¬Q}, {Q,¬Q}.

Eliminating Q gives { }.

So the output is EMPTY CLAUSE.

Example

S : {P,¬Q} {Q}.

Eliminating P gives {Q}.

Eliminating Q gives no clauses.

Thus the output is NO CLAUSES.

(LMCS, p. 114) II.89

Horn Clauses

For certain types of clauses resolution is

known to be reasonably fast.

A Horn clause is a clause with at most one

positive literal.

Example

The following is a complete list of the Horn

clauses in the three variables P, Q, R:

{¬P,¬Q,¬R}

{P,¬Q,¬R}

{¬P, Q,¬R}

{¬P,¬Q, R}

{P,¬Q, R,¬S} is not a Horn clause.

(LMCS, p. 115) II.90

Lemma

A resolvent of two Horn clauses is always a

Horn clause.

Horn clauses have been popular in logic

programming, e.g., in Prolog.

Many special kinds of resolution have been

developed for Horn clauses—one of the

simplest uses unit clauses.

A unit clause is a clause {L} with a single

literal.

(LMCS, p. 115) II.91

Unit resolution

refers to resolution derivations in which at

least one of the clauses used in each

resolution step is a unit clause.

Theorem

Unit resolution is sound and complete for

Horn clauses.

That is, a set of Horn clauses is not

satisfiable iff one can derive the empty clause

using unit resolution.

For resolution with unit clauses the resolvents

do not grow in size.

(LMCS, p. 115) II.92

Example

Using unit resolution on Horn clauses with

S =

{ {P}, {¬P,¬R, S}, {R}, {¬R,¬S,¬T} }

1. {P} given

2. {¬P,¬R, S} given

3. {R} given

4. {¬R,¬S,¬T} given

5. {¬R, S} 1,2

6. {¬P, S} 2, 3

7. {¬S,¬T} 3,4

8. {S} 1,6

9. {¬R,¬T} 4, 8

10. {¬T} 7, 8

(The unit clauses have boldface numbers.)

No further clauses can be derived by unit

resolution.

Thus the empty clause cannot be derived, so

S is satisfiable.

(LMCS) II.93

A diagram of the unit resolution steps in the

previous example:

{ R }

{ S }

{ T }

{ R, S } { P, S }

{ P, R, S }

{ S, T }

{ R, S, T }

{ R, T }

{ P }

(LMCS, pp. 116-117) II.94

Graph Clauses

Let G be a finite graph with vertex set V

and edge set E.

Label each vertex v with 0 or 1.

This number, charge(v), is the charge of the

vertex.

The total charge of the graph is the sum of

the vertex charges (modulo 2).

Label the edges with distinct propositional

variables.

For v a vertex, the set of variables labelling

edges adjacent to v is V ar(v).

(LMCS, pp. 117) II.95

1

0

to vertices

a b

cd

a b

cd

 The Graph G Assigning charges Assigning propositional

1

1

variables to edges

d

a b

c

1 1

10

Q

RP

S

For v ∈ V construct Clauses(v), as follows:

C is in Clauses(v) iff

• the propositional variables in C are

precisely those of V ar(v)

• the number of negative literals in C is not

equal to charge(v) (modulo 2).

(LMCS, pp. 117) II.96

Let Ĝ be the labelled graph.

Then Clauses(Ĝ) is the union of the various

Clauses(v).

Theorem [Tseitin, 1968]

Clauses(Ĝ) is satisfiable iff the total charge

is zero.

Thus we have a very fast test to see if

Clauses(Ĝ) is satisfiable, but Tseitin showed

that to decide this using resolution can be

very slow.

(LMCS, pp. 117-118) II.97

For the example
1

0

a b

cd
S

R

Q

P

1

1

we have

Clauses(a) = {{P, Q}, {¬P,¬Q}}

Clauses(b) = {{Q, R}, {¬Q,¬R}

Clauses(c) = {{P, R, S}, {¬P, R,¬S}, {¬P,¬R, S}, {P,¬R,¬S}}

Clauses(d) = {¬S}.

Because the total charge is 1, by Tseitin’s

theorem this set of 9 clauses is not

satisfiable.

(LMCS, pp. 118-119) II.98

Pigeonhole Clauses

In 1974 Cook and Rechkow suggested that

the set of clauses expressing a pigeonhole

principle would be difficult to prove

unsatisfiable by resolution.

The pigeonhole principle Pn: one cannot

put n+1 objects into n slots with distinct

objects going into distinct slots.

We choose propositional variables Pij for

1 ≤ i ≤ n+1 and 1 ≤ j ≤ n.

Our intended interpretation of Pij is that

the ith object goes into the jth slot.

(LMCS) II.99

So we write down the following clauses:

• {Pi1, · · · , Pin} for 1 ≤ i ≤ n+1.

These say that each object i goes into some

slot k .

• {¬Pik,¬Pjk} for 1 ≤ i < j ≤ n+1 ,

1 ≤ k ≤ n .

These say that distinct objects i and j

cannot go into the same slot.

Of course, this cannot be done, so the

clauses must be unsatisfiable.

(LMCS, pp. 118-119) II.100

However, if we throw away any one clause

from Pn, the remaining collection of clauses

is satisfiable!

Example 2.13.1

P2 is the set of nine clauses in six variables:

{P11, P12} {P21, P22} {P31, P32}

{¬ P11, ¬ P21} {¬ P12, ¬ P22} {¬ P11, ¬ P31}

{¬ P12, ¬ P32} {¬ P21, ¬ P31} {¬ P22, ¬ P32}.

Note: In 1985 A. Haken proved that

pigeonhole clauses are indeed difficult for

resolution.

