PMath 330 §01 (1:30 p.m.) MIDTERM Friday, October 29, 1999
There are 4 pages, with 6 problems.

Problem 1

Give the mood and figure of the syllogism to the right, and fill in the Venn diagram [use more than one if needed] to determine if the syllogism is indeed valid. State whether the syllogism is valid under Modern Standards as well as under Aristotelian Standards.

Mood: EAO Figure: 2
Valid (Modern): NO

Problem 2

Show that the following argument is valid by filling in the Lewis Carroll tree on the right, including appropriate numbers for the boxes.

1. $A C D=0$
2. $A^{\prime} D F^{\prime}=0$
3. $B C E=0$
4. $B^{\prime} D^{\prime} F^{\prime}=0$
5. $D^{\prime} E^{\prime} F^{\prime}=0$

Problem 3

$\mathrm{F}_{1}: \neg R \vee Q$
$\mathrm{F}_{2}: R \vee((P \rightarrow R) \leftrightarrow Q)$
$\mathrm{F}_{3}: \neg Q \rightarrow Q$
$\mathrm{F}_{4}:(Q \leftrightarrow P) \rightarrow(Q \wedge(P \leftrightarrow Q))$
$\mathrm{F}_{5}: \neg R \leftrightarrow Q$

	P	Q	R	$\mathrm{~F}_{1}$	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	$\mathrm{~F}_{4}$	$\mathrm{~F}_{5}$	$F_{2} \rightarrow \mathrm{~F}_{5}$	
1.	1	1	1	1	1	1	1	0	0	
2.	1	1	0	1	0	1	1	1	1	
3.	1	0	1	0	1	0	1	1	1	
4.	1	0	0	1	1	0	1	0	0	
5.	0	1	1	1	1	1	1	0	0	
6.	0	1	0	1	1	1	1	1	1	
7.	0	0	1	0	1	0	0	1	1	
8.	0	0	0	1	0	0	0	0	1	

(a) What is the Conjunctive Normal Form of $\mathrm{F}_{2} \rightarrow \mathrm{~F}_{5}$?

$$
(\neg P \vee \neg Q \vee \neg R) \wedge(\neg P \vee Q \vee R) \wedge(P \vee \neg Q \vee \neg R)
$$

(b) Is the set $\left\{\neg \mathrm{F}_{1}, \mathrm{~F}_{2}, \neg \mathrm{~F}_{3}\right\}$ satisfiable? (Why?)

YES (Row 3, or Row 7)
(c) Is the argument $\mathrm{F}_{1}, \neg \mathrm{~F}_{3} \therefore \mathrm{~F}_{4}$ valid? (Why?)

NO (In Row 8 the premisses are true, the conclusion false.)

Problem 4

State the pigeonhole principle \mathbb{P}_{2} (this means there are two pigeonholes) and express it as a collection of clauses. (This was the last topic covered in the lectures on clauses.)
\mathbb{P}_{2} asserts that if we put three objects into two slots then in some slot there must be two objects; or equivalently, it is not possible to put three objects into two slots with no two objects in the same slot.

The clauses for \mathbb{P}_{2} are:
$\left\{P_{i 1}, P_{i 2}\right\} \quad$ for $1 \leq i \leq 3$
$\left\{\neg P_{i k}, \neg P_{j k}\right\} \quad$ for $1 \leq i<j \leq 3,1 \leq k \leq 2$.
Or, in detail,

$$
\begin{array}{lll}
\left\{P_{11}, P_{12}\right\} & \left\{P_{21}, P_{22}\right\} & \left\{P_{31}, P_{32}\right\} \\
\left\{\neg P_{11}, \neg P_{21}\right\} & \left\{\neg P_{12}, \neg P_{22}\right\} & \left\{\neg P_{11}, \neg P_{31}\right\} \\
\left\{\neg P_{12}, \neg P_{32}\right\} & \left\{\neg P_{21}, \neg P_{31}\right\} & \left\{\neg P_{22}, \neg P_{32}\right\} .
\end{array}
$$

Problem 5

Fill in the reasons to justify Lemma D.0.10.
The Frege-Eukasiewicz Propositional Logic
Propositional Variables: P, Q, \ldots
Connectives: \neg, \rightarrow
Rule of inference: (modus ponens) $\frac{\mathrm{F}, \mathrm{F} \rightarrow \mathrm{G}}{\mathrm{G}}$
Axiom schemata:
A1: $\mathrm{F} \rightarrow(\mathrm{G} \rightarrow \mathrm{F})$
A2: $(\mathrm{F} \rightarrow(\mathrm{G} \rightarrow \mathrm{H})) \rightarrow((\mathrm{F} \rightarrow \mathrm{G}) \rightarrow(\mathrm{F} \rightarrow \mathrm{H}))$
$\mathrm{A} 3:(\neg \mathrm{F} \rightarrow \neg \mathrm{G}) \rightarrow(\mathrm{G} \rightarrow \mathrm{F})$

Lemma A If F is an axiom then $\vdash F$.
Lemma B If $F \in \mathcal{S}$ then $\mathcal{S} \vdash \mathrm{F}$.
Lemma D.0.5 $\vdash \mathrm{F} \rightarrow \mathrm{F}$.
Lemma D.0.6 If $\mathcal{S} \vdash \mathrm{F}$ and $\mathcal{S} \vdash \mathrm{F} \rightarrow \mathrm{G}$, then $\mathcal{S} \vdash \mathrm{G}$.
Lemma D.0.7 If $\mathcal{S} \vdash \mathrm{F}$ and $\mathcal{S} \subseteq \mathcal{S}^{\prime}$, then $\mathcal{S}^{\prime} \vdash \mathrm{F}$.
Lemma D.0.8 $\mathcal{S} \cup\{F\} \vdash G \quad$ iff $\quad \mathcal{S} \vdash \mathrm{F} \rightarrow \mathrm{G}$.
Lemma D.0.9 If $\mathcal{S} \vdash \mathrm{F} \rightarrow \mathrm{G}$ and $\mathcal{S} \vdash \mathrm{G} \rightarrow \mathrm{H}$, then $\mathcal{S} \vdash \mathrm{F} \rightarrow \mathrm{H}$.
Lemma D.0.10 If $\mathcal{S} \vdash \mathrm{F} \rightarrow(\mathrm{G} \rightarrow \mathrm{H})$ and $\mathcal{S} \vdash \mathrm{G}$, then $\mathcal{S} \vdash \mathrm{F} \rightarrow \mathrm{H}$. Proof:

1.	$\mathcal{S} \vdash \mathrm{F} \rightarrow(\mathrm{G} \rightarrow \mathrm{H})$
2.	$\mathcal{S} \nvdash \mathrm{G}$
3.	$\mathcal{S} \cup\{\mathrm{F}\}$
4.	$\mathscr{S} \cup \mathrm{G}$
5.	$\mathcal{S} \cup\{\mathrm{F}\}$
6.	$\vdash \mathrm{G} \rightarrow \mathrm{H}$
6.	$\mathcal{S} \nvdash \mathrm{H} \rightarrow \mathrm{H}$.

given
given
$D .0 .7,2$
$D .0 .8,1$
$D .0 .6,3,4$
$D .0 .8,5$

Problem 6

(a) Without assuming any set of connectives is adequate, show that $\mathcal{C}=\{\rightarrow, \neg\}$ is adequate.
[Blackboard Note: Assume the standard connectives are adequate.]

$$
\begin{aligned}
0 & \sim \neg(P \rightarrow P) \\
1 & \sim P \rightarrow P \\
P \vee Q & \sim \neg P \rightarrow Q \\
P \wedge Q & \sim \neg(P \rightarrow \neg Q) \\
P \leftrightarrow Q & \sim \neg((P \rightarrow Q) \rightarrow \neg(Q \rightarrow P)) \\
\hline \neg P & \sim \neg P \\
P \rightarrow Q & \sim P \rightarrow Q
\end{aligned}
$$

(b) Use (a) to show that the Schröder connective λ is adequate.

$$
\begin{aligned}
\neg P & \sim P \curlywedge P \\
P \rightarrow Q & \sim((P \curlywedge P) \curlywedge Q) \curlywedge((P \curlywedge P) \curlywedge Q)
\end{aligned}
$$

