PMath 330 §01 (1:30 p.m.) MIDTERM Friday, October 29, 1999

There are 4 pages, with 6 problems.

Problem 1

Give the **mood** and **figure** of the syllogism to the right, and fill in the Venn diagram [use more than one if needed] to determine if the syllogism is indeed valid. State whether the syllogism is valid under **Modern Standards** as well as under **Aristotelian Standards**.

Mood: EAO Figure: 2

Valid (Modern): NO

Valid (Aristotelian): YES

Problem 2

Show that the following argument is valid by filling in the Lewis Carroll tree on the right, including appropriate numbers for the boxes.

> 1. ACD = 02. A'DF' = 03. BCE = 04. B'D'F' = 05. D'E'F' = 0CF' = 0

12 marks

All S is M No P is M Some S is not P.

13 marks

Problem 3

Given the following five formulas and their combined truth table

		P	Q	R	\mathbf{F}_1	F_2	F_3	\mathbf{F}_4	F_5	$F_2 \to F_5$	
	1.	1	1	1	1	1	1	1	0	0	
$\mathbf{F}_1: \neg R \lor Q$	2.	1	1	0	1	0	1	1	1	1	
$F_2: R \lor ((P \to R) \leftrightarrow Q)$	3.	1	0	1	0	1	0	1	1	1	
$\mathbf{F}_3:\neg Q \to Q$	4.	1	0	0	1	1	0	1	0	0	
$F_4: (Q \leftrightarrow P) \to (Q \land (P \leftrightarrow Q))$	5.	0	1	1	1	1	1	1	0	0	
$\mathbf{F}_5: \neg R \leftrightarrow Q$	6.	0	1	0	1	1	1	1	1	1	
	7.	0	0	1	0	1	0	0	1	1	
	8.	0	0	0	1	0	0	0	0	1	

(a) What is the Conjunctive Normal Form of $F_2 \rightarrow F_5$?

 $(\neg P \lor \neg Q \lor \neg R) \land (\neg P \lor Q \lor R) \land (P \lor \neg Q \lor \neg R)$

(b) Is the set $\{\neg F_1, F_2, \neg F_3\}$ satisfiable? (Why?)

YES (Row 3, or Row 7)

(c) Is the argument F_1 , $\neg F_3$: F_4 valid? (Why?)

NO (In Row 8 the premisses are true, the conclusion false.)

Problem 4

State the **pigeonhole principle** \mathbb{P}_2 (this means there are two pigeonholes) and express it as a collection of clauses. (This was the last topic covered in the lectures on clauses.)

 \mathbb{P}_2 asserts that if we put three objects into two slots then in some slot there must be two objects; or equivalently, it is not possible to put three objects into two slots with no two objects in the same slot.

The clauses for \mathbb{P}_2 are: $\{P_{i1}, P_{i2}\}$ for $1 \le i \le 3$ $\{\neg P_{ik}, \neg P_{jk}\}$ for $1 \le i < j \le 3, \ 1 \le k \le 2$. Or, in detail,

$$\{P_{11}, P_{12}\} \quad \{P_{21}, P_{22}\} \quad \{P_{31}, P_{32}\} \\ \{\neg P_{11}, \neg P_{21}\} \quad \{\neg P_{12}, \neg P_{22}\} \quad \{\neg P_{11}, \neg P_{31}\} \\ \{\neg P_{12}, \neg P_{32}\} \quad \{\neg P_{21}, \neg P_{31}\} \quad \{\neg P_{22}, \neg P_{32}\}.$$

12 marks

10

Problem 5

Fill in the reasons to justify Lemma D.0.10.

The Frege-Lukasiewicz Propositional Logic **Propositional Variables:** P, Q, ... **Connectives:** \neg, \rightarrow **Rule of inference:** (modus ponens) $\frac{F, F \rightarrow G}{G}$ **Axiom schemata: A1:** $F \rightarrow (G \rightarrow F)$ **A2:** $(F \rightarrow (G \rightarrow H)) \rightarrow ((F \rightarrow G) \rightarrow (F \rightarrow H))$ **A3:** $(\neg F \rightarrow \neg G) \rightarrow (G \rightarrow F)$

Lemma A If F is an axiom then $\vdash F$.

 $\mathbf{Lemma} \ \mathbf{B} \quad \mathrm{If} \ \mathsf{F} \in \mathbb{S} \ \mathrm{then} \ \mathbb{S} \vdash \mathsf{F}.$

 $\label{eq:Lemma D.0.5} \ \ \vdash \mathsf{F} \to \mathsf{F}.$

Lemma D.0.6 If $S \vdash F$ and $S \vdash F \rightarrow G$, then $S \vdash G$.

Lemma D.0.7 If $S \vdash F$ and $S \subseteq S'$, then $S' \vdash F$.

 $\mathbf{Lemma} \ \mathbf{D.0.8} \ \ \mathbb{S} \cup \{\mathsf{F}\} \vdash \mathsf{G} \quad \ \mathrm{iff} \quad \ \mathbb{S} \vdash \mathsf{F} \to \mathsf{G}.$

 $\mathbf{Lemma} \ \mathbf{D.0.9} \ \ \mathrm{If} \ \mathbb{S} \vdash \mathsf{F} \to \mathsf{G} \ \mathrm{and} \ \mathbb{S} \vdash \mathsf{G} \to \mathsf{H}, \ \mathrm{then} \ \mathbb{S} \vdash \mathsf{F} \to \mathsf{H}.$

Lemma D.0.10 If $S \vdash F \rightarrow (G \rightarrow H)$ and $S \vdash G$, then $S \vdash F \rightarrow H$. **Proof:**

1.	$\$ \ \vdash \ F \to (G \to H)$	given
2.	S ⊢ G	given
3.	$\mathbb{S} \cup \{F\} \ \vdash \ G$	D.0.7, 2
4.	$\mathbb{S} \cup \{F\} \ \vdash \ G \to H$	D.0.8, 1
5.	$\mathbb{S} \cup \{F\} \ \vdash \ H$	D.0.6, 3, 4
6.	$\ \ \ \vdash \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	D.0.8, 5

Problem 6

(a) Without assuming any set of connectives is adequate,

show that $\mathcal{C} = \{ \rightarrow, \neg \}$ is adequate.

[Blackboard Note: Assume the standard connectives are adequate.]

(b) Use (a) to show that the Schröder connective \wedge is adequate.

$$\neg P \sim P \land P$$
$$P \to Q \sim \left((P \land P) \land Q \right) \land \left((P \land P) \land Q \right)$$