PMath 330 §02 (10:30 a.m.)MIDTERM Friday, October 29, 1999
There are 4 pages, with 6 problems.

Problem 1

Give the mood and figure of the syllogism to the right, and fill in the Venn diagram [use more than one if needed] to determine if the syllogism is indeed valid. State whether the syllogism is valid under Modern Standards as well as under Aristotelian Standards.

Mood: EAO Figure: 3
Valid (Modern): NO

All M is S
No M is P
Some S is not P .

Valid (Aristotelian): YES

Problem 2

Show that the following argument is valid by filling in the Lewis Carroll tree on the right, including appropriate numbers for the boxes.

1. $C D F=0$
2. $A^{\prime} C F^{\prime}=0$
3. $B D E=0$
4. $A^{\prime} C^{\prime} E^{\prime}=0$
5. $A^{\prime} B^{\prime} C^{\prime}=0$

Problem 3

Given the following five formulas and their combined truth table
$\mathrm{F}_{1}: \neg R \vee Q$
$\mathrm{F}_{2}: R \vee((P \rightarrow R) \leftrightarrow Q)$
$\mathrm{F}_{3}: \neg Q \rightarrow Q$
$\mathrm{F}_{4}:(Q \leftrightarrow P) \rightarrow(Q \wedge(P \leftrightarrow Q))$
$\mathrm{F}_{5}: \neg R \leftrightarrow Q$

	P	Q	R	$\mathrm{~F}_{1}$	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	$\mathrm{~F}_{4}$	$\mathrm{~F}_{5}$	$\mathrm{~F}_{1} \rightarrow \mathrm{~F}_{5}$	
1.	1	1	1	1	1	1	1	0	0	
2.	1	1	0	1	0	1	1	1	1	
3.	1	0	1	0	1	0	1	1	1	
4.	1	0	0	1	1	0	1	0	0	
5.	0	1	1	1	1	1	1	0	0	
6.	0	1	0	1	1	1	1	1	1	
7.	0	0	1	0	1	0	0	1	1	
8.	0	0	0	1	0	0	0	0	0	

(a) What is the Conjunctive Normal Form of $\mathrm{F}_{1} \rightarrow \mathrm{~F}_{5}$?

$$
(\neg P \vee \neg Q \vee \neg R) \wedge(\neg P \vee Q \vee R) \wedge(P \vee \neg Q \vee \neg R) \wedge(P \vee Q \vee R)
$$

(b) Is the set $\left\{\mathrm{F}_{1}, \neg \mathrm{~F}_{2}, \mathrm{~F}_{3}\right\}$ satisfiable? (Why?)

YES (Row 3)
(c) Is the argument $\neg \mathrm{F}_{1}, \mathrm{~F}_{3} \therefore \mathrm{~F}_{4}$ valid? (Why?)

YES (The premisses are not satisfied in any row.)

Problem 4

Find the graph clauses for the labelled graph on the right, and state (with reasons) whether or not this set of clauses is satisfiable.

Clauses $(a): \quad\{P, S\} \quad\{\neg P, \neg S\}$
Clauses $(b): \quad\{\neg P, Q, T\} \quad\{P, \neg Q, T\} \quad\{P, Q, \neg T\} \quad\{\neg P, \neg Q, \neg T\}$
Clauses $(c): \quad\{\neg Q, R\} \quad\{Q, \neg R\}$
Clauses $(d): \quad\{R, S, T\} \quad\{\neg R, \neg S, T\} \quad\{\neg R, S, \neg T\} \quad\{R, \neg S, \neg T\}$
As the TOTAL CHARGE is 0 , this collection of 12 clauses is satisfiable.

Problem 5

The following gives the first part of the completeness proof for the FŁ proof system. Fill in the reasons to justify Lemma D.0.5.

The Frege-Łukasiewicz Propositional Logic
Propositional Variables: P, Q, \ldots
Connectives: \neg, \rightarrow
Rule of inference: (modus ponens) $\frac{\mathrm{F}, \mathrm{F} \rightarrow \mathrm{G}}{\mathrm{G}}$
Axiom schemata:
A1: $\mathrm{F} \rightarrow(\mathrm{G} \rightarrow \mathrm{F})$
A2: $(\mathrm{F} \rightarrow(\mathrm{G} \rightarrow \mathrm{H})) \rightarrow((\mathrm{F} \rightarrow \mathrm{G}) \rightarrow(\mathrm{F} \rightarrow \mathrm{H}))$
$\mathrm{A} 3:(\neg \mathrm{F} \rightarrow \neg \mathrm{G}) \rightarrow(\mathrm{G} \rightarrow \mathrm{F})$
Lemma A: If F is an axiom then $\vdash \mathrm{F}$.

Lemma B: If $\mathrm{F} \in \mathcal{S}$ then $\mathcal{S} \vdash \mathrm{F}$.

Lemma D.0.5: $\vdash F \rightarrow F$.

Proof. The following gives a derivation of $F \rightarrow F$:

1. $\mathrm{F} \rightarrow((\mathrm{F} \rightarrow \mathrm{F}) \rightarrow \mathrm{F})$
2. $(\mathrm{F} \rightarrow((\mathrm{F} \rightarrow \mathrm{F}) \rightarrow \mathrm{F})) \rightarrow((\mathrm{F} \rightarrow(\mathrm{F} \rightarrow \mathrm{F})) \rightarrow(\mathrm{F} \rightarrow \mathrm{F}))$
3. $(\mathrm{F} \rightarrow(\mathrm{F} \rightarrow \mathrm{F})) \rightarrow(\mathrm{F} \rightarrow \mathrm{F})$
4. $\mathrm{F} \rightarrow(\mathrm{F} \rightarrow \mathrm{F})$
5. $\mathrm{F} \rightarrow \mathrm{F}$.

Problem 6

(a) Without assuming any set of connectives is adequate, show that $\mathcal{C}=\{\wedge, \neg\}$ is adequate.
[Blackboard Note: Assume the standard connectives are adequate.]

$$
\begin{aligned}
0 & \sim P \wedge \neg P \\
1 & \sim \neg(P \wedge \neg P) \\
P \vee Q & \sim \neg(\neg P \wedge \neg Q) \\
P \rightarrow Q & \sim \neg(P \wedge \neg Q) \\
P \leftrightarrow Q & \sim \neg(P \wedge \neg Q) \wedge \neg(\neg P \wedge Q) \\
\neg P & \sim \neg P \\
P \wedge Q & \sim P \wedge Q
\end{aligned}
$$

(b) Use (a) to show that the Sheffer stroke \mid is adequate.

$$
\begin{aligned}
\neg P & \sim P \mid P \\
P \wedge Q & \sim(P \mid Q) \mid(P \mid Q)
\end{aligned}
$$

