PMath 330 §02 (10:30 a.m.)MIDTERM

There are 4 pages, with 6 problems.

Problem 1

Give the **mood** and **figure** of the syllogism to the right, and fill in the Venn diagram [use more than one if needed] to determine if the syllogism is indeed valid. State whether the syllogism is valid under **Modern Standards** as well as under **Aristotelian Standards**.

Mood: EAO Figure: 3

Valid (Modern): NO

Valid (Aristotelian): YES

Problem 2

Show that the following argument is valid by filling in the Lewis Carroll tree on the right, including appropriate numbers for the boxes.

12 marks

All M is S No M is P Some S is not P.

Friday, October 29, 1999

13 marks

Problem 3

Given the following five formulas and their combined truth table

		P	Q	R	\mathbf{F}_1	\mathbf{F}_2	F_3	F_4	F_5	$F_1 \to F_5$	
	1.	1	1	1	1	1	1	1	0	0	
$\mathbf{F}_1: \neg R \lor Q$	2.	1	1	0	1	0	1	1	1	1	
$F_2: R \lor ((P \to R) \leftrightarrow Q)$	3.	1	0	1	0	1	0	1	1	1	
$\mathbf{F}_3: \neg Q \to Q$	4.	1	0	0	1	1	0	1	0	0	
$F_4: (Q \leftrightarrow P) \to (Q \land (P \leftrightarrow Q))$	5.	0	1	1	1	1	1	1	0	0	
$\mathbf{F}_5: \neg R \leftrightarrow Q$	6.	0	1	0	1	1	1	1	1	1	
	7.	0	0	1	0	1	0	0	1	1	
	8.	0	0	0	1	0	0	0	0	0	

(a) What is the Conjunctive Normal Form of $F_1 \rightarrow F_5$?

$$(\neg P \lor \neg Q \lor \neg R) \land (\neg P \lor Q \lor R) \land (P \lor \neg Q \lor \neg R) \land (P \lor Q \lor R)$$

(b) Is the set $\{F_1, \neg F_2, F_3\}$ satisfiable? (Why?)

YES (Row 3)

(c) Is the argument $\neg F_1, F_3 \therefore F_4$ valid? (Why?)

YES (The premisses are not satisfied in any row.)

Problem 4

Find the graph clauses for the labelled graph on the right, and state (with reasons) whether or not this set of clauses is satisfiable.

Clauses(a):	$\{P, S\}$	$\{\neg P, \neg S\}$		
Clauses(b):	$\{\neg P, Q, T\}$	$\{P, \neg Q, T\}$	$\{P, Q, \neg T\}$	$\{\neg P, \neg Q, \neg T\}$
Clauses(c):	$\{\neg Q, R\}$	$\{Q, \neg R\}$		
Clauses(d):	$\{R, S, T\}$	$\{\neg R, \neg S, T\}$	$\{\neg R, S, \neg T\}$	$\{R, \neg S, \neg T\}$

As the TOTAL CHARGE is 0, this collection of 12 clauses is satisfiable.

10 marks

Problem 5

The following gives the first part of the completeness proof for the FL proof system. Fill in the reasons to justify Lemma D.0.5.

The Frege-Lukasiewicz Propositional Logic **Propositional Variables:** P, Q, ... **Connectives:** \neg, \rightarrow **Rule of inference:** (modus ponens) $\frac{\mathsf{F}, \ \mathsf{F} \rightarrow \mathsf{G}}{\mathsf{G}}$ **Axiom schemata: A1:** $\mathsf{F} \rightarrow (\mathsf{G} \rightarrow \mathsf{F})$ **A2:** $(\mathsf{F} \rightarrow (\mathsf{G} \rightarrow \mathsf{H})) \rightarrow ((\mathsf{F} \rightarrow \mathsf{G}) \rightarrow (\mathsf{F} \rightarrow \mathsf{H}))$ **A3:** $(\neg \mathsf{F} \rightarrow \neg \mathsf{G}) \rightarrow (\mathsf{G} \rightarrow \mathsf{F})$

Lemma A: If F is an axiom then \vdash F.

Lemma B: If $F \in S$ then $S \vdash F$.

Lemma D.0.5: $\vdash \mathsf{F} \rightarrow \mathsf{F}$.

Proof. The following gives a derivation of $\mathsf{F} \to \mathsf{F}$:

Problem 6

(a) Without assuming any set of connectives is adequate,

show that $\mathcal{C} = \{\land, \neg\}$ is adequate.

[Blackboard Note: Assume the standard connectives are adequate.]

(b) Use (a) to show that the Sheffer stroke | is adequate.

$$\neg P \sim P|P$$

 $P \wedge Q \sim (P|Q)|(P|Q)$

marks