1.	4.		
2.	5.	Name	
3.	6.	ID	
Total :	· = /	75	

PMath 330 §01 (1:30 p.m.) MIDTERM Friday, October 29, 1999

There are 4 pages, with 6 problems.

Problem 1

Give the **mood** and **figure** of the syllogism to the right, and fill in the Venn diagram [use more than one if needed] to determine if the syllogism is indeed valid. State whether the syllogism is valid under **Modern Standards** as well as under **Aristotelian Standards**.

Mood: Figure:

Valid (Modern):

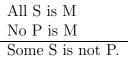
Valid (Aristotelian):

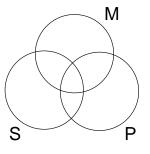
Problem 2

Show that the following argument is valid by filling in the Lewis Carroll tree on the right, including appropriate numbers for the boxes.

> 1. ACD = 02. A'DF' = 03. BCE = 04. B'D'F' = 05. D'E'F' = 0CE' = 0

12 marks





ment is Carroll cF' marks

Name ID

Problem 3

		P	Q	R	\mathbf{F}_1	F_2	F_3	F_4	F_5		
	1.	1	1	1	1	1	1	1	0		
$\mathbf{F}_1: \neg R \lor Q$	2.	1	1	0	1	0	1	1	1		
$F_2: R \lor ((P \to R) \leftrightarrow Q)$	3.	1	0	1	0	1	0	1	1		
$\mathbf{F}_3: \neg Q \to Q$	4.	1	0	0	1	1	0	1	0		
$F_4: (Q \leftrightarrow P) \to (Q \land (P \leftrightarrow Q))$	5.	0	1	1	1	1	1	1	0		
$\mathbf{F}_5: \neg R \leftrightarrow Q$	6.	0	1	0	1	1	1	1	1		
	7.	0	0	1	0	1	0	0	1		
	8.	0	0	0	1	0	0	0	0		

(a) What is the Conjunctive Normal Form of $F_2 \rightarrow F_5$?

Given the following five formulas and their combined truth table

- (b) Is the set $\{\neg F_1, F_2, \neg F_3\}$ satisfiable? (Why?)
- (c) Is the argument F_1 , $\neg F_3$. F₄ valid? (Why?)

Problem 4

State the **pigeonhole principle** \mathbb{P}_2 (this means there are two pigeonholes) and express it as a collection of clauses. (This was the last topic covered in the lectures on clauses.)

12 marks

10 marks

Problem 5

Fill in the reasons to justify Lemma D.0.10.

The Frege-Łukasiewicz Propositional Logic **Propositional Variables:** P, Q, ... **Connectives:** \neg, \rightarrow **Rule of inference:** (modus ponens) $\frac{F, F \rightarrow G}{G}$ **Axiom schemata: A1:** $F \rightarrow (G \rightarrow F)$ **A2:** $(F \rightarrow (G \rightarrow H)) \rightarrow ((F \rightarrow G) \rightarrow (F \rightarrow H))$ **A3:** $(\neg F \rightarrow \neg G) \rightarrow (G \rightarrow F)$

Lemma A If F is an axiom then $\vdash F$.

Lemma B If $F \in S$ then $S \vdash F$.

Lemma D.0.5 $\vdash F \rightarrow F$.

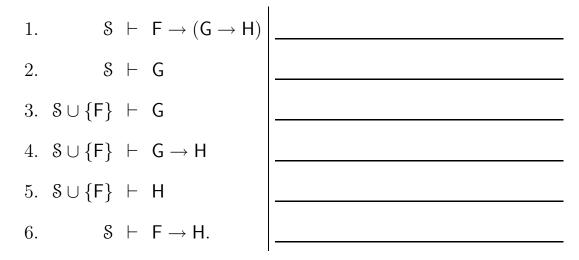
Lemma D.0.6 If $S \vdash F$ and $S \vdash F \rightarrow G$, then $S \vdash G$.

Lemma D.0.7 If $S \vdash F$ and $S \subseteq S'$, then $S' \vdash F$.

 $\mathbf{Lemma} \ \mathbf{D.0.8} \ \ \mathbb{S} \cup \{\mathsf{F}\} \vdash \mathsf{G} \quad \ \mathrm{iff} \quad \ \mathbb{S} \vdash \mathsf{F} \to \mathsf{G}.$

Lemma D.0.9 If $S \vdash F \rightarrow G$ and $S \vdash G \rightarrow H$, then $S \vdash F \rightarrow H$.

Lemma D.0.10 If $S \vdash F \rightarrow (G \rightarrow H)$ and $S \vdash G$, then $S \vdash F \rightarrow H$. **Proof:**



12 marks

Name		
ID		
Problem 6		16
(a) Without assuming any set of connectives is adequ	marks	

(b) Use (a) to show that the Schröder connective λ is adequate.

show that $\mathcal{C} = \{ \rightarrow, \neg \}$ is adequate.