1.	4.
2.	5.
3.	6.

 $\overline{\text{Total}} = /75$

Name	
ID	

PMath 330 §02 **(10:30 a.m.)**MIDTERM Friday.

Friday, October 29, 1999

There are 4 pages, with 6 problems.

Problem 1

Give the **mood** and **figure** of the syllogism to the right, and fill in the Venn diagram [use more than one if needed] to determine if the syllogism is indeed valid. State whether the syllogism is valid under **Modern Standards** as well as under **Aristotelian Standards**.

Mood: Figure:

Valid (Modern):

Valid (Aristotelian):

$rac{12}{ ext{marks}}$

All M is S
No M is P
Some S is not P.

Problem 2

Show that the following argument is valid by filling in the Lewis Carroll tree on the right, including appropriate numbers for the boxes.

- 1. CDF = 0
- 2. A'CF' = 0
- 3. BDE = 0
- 4. A'C'E' = 0
- $\frac{5. \ A'B'C' = 0}{A'D = 0}$

Problem 3

10 marks

Given the following five formulas and their combined truth table

		P	Q	R	F_1	F_2	F_3	F_4	F_5		[
	1.	1	1	1	1	1	1	1	0		
$F_1: \neg R \lor Q$	2.	1	1	0	1	0	1	1	1		
$F_2: R \vee ((P \to R) \leftrightarrow Q)$	3.	1	0	1	0	1	0	1	1		
$F_3: \neg Q \to Q$	4.	1	0	0	1	1	0	1	0		
$F_4: (Q \leftrightarrow P) \to (Q \land (P \leftrightarrow Q))$	5.	0	1	1	1	1	1	1	0		
$F_5: \neg R \leftrightarrow Q$	6.	0	1	0	1	1	1	1	1		
	7.	0	0	1	0	1	0	0	1		
	8.	0	0	0	1	0	0	0	0		

- (a) What is the Conjunctive Normal Form of $F_1 \to F_5$?
- (b) Is the set $\{F_1, \neg F_2, F_3\}$ satisfiable? (Why?)
- (c) Is the argument $\neg F_1, F_3 :: F_4 \text{ valid? (Why?)}$

Problem 4

Find the graph clauses for the labelled graph on the right, and state (with reasons) whether or not this set of clauses is satisfiable.

14 marks

Name	
ID	

Problem 5

10 marks

The following gives the first part of the completeness proof for the FL proof system. Fill in the reasons to justify Lemma D.0.5.

The Frege-Łukasiewicz Propositional Logic

Propositional Variables: P, Q, \dots

Connectives: \neg , \rightarrow

Rule of inference: (modus ponens) $\frac{F, F \to G}{G}$

Axiom schemata:

 $\mathbf{A1:}\ \mathsf{F} \to (\mathsf{G} \to \mathsf{F})$

 $\mathbf{A2:}\ (\mathsf{F} \to (\mathsf{G} \to \mathsf{H})) \to ((\mathsf{F} \to \mathsf{G}) \to (\mathsf{F} \to \mathsf{H}))$

A3: $(\neg F \rightarrow \neg G) \rightarrow (G \rightarrow F)$

Lemma A: If F is an axiom then \vdash F.

Lemma B: If $F \in S$ then $S \vdash F$.

Lemma D.0.5: $\vdash \mathsf{F} \to \mathsf{F}$.

Proof. The following gives a derivation of $F \to F$:

1.
$$F \rightarrow ((F \rightarrow F) \rightarrow F)$$

2.
$$(\mathsf{F} \to ((\mathsf{F} \to \mathsf{F}) \to \mathsf{F})) \to ((\mathsf{F} \to (\mathsf{F} \to \mathsf{F})) \to (\mathsf{F} \to \mathsf{F}))$$

3.
$$(\mathsf{F} \to (\mathsf{F} \to \mathsf{F})) \to (\mathsf{F} \to \mathsf{F})$$

4.
$$F \rightarrow (F \rightarrow F)$$

5.
$$F \rightarrow F$$
.

Name			
ID			

Problem 6 16

(a) Without assuming any set of connectives is adequate, show that $\mathcal{C} = \{ \land, \ \neg \}$ is adequate.

marks

(b) Use (a) to show that the Sheffer stroke | is adequate.