| 1. | 4. |  |
| :---: | :---: | :---: |
| 2. | 5. |  |
| 3. | 6. |  |
| Total $=$ |  | $/ 7$ |

Name
ID $\qquad$

PMath 330 §02 ( $\mathbf{1 0 : 3 0} \mathbf{~ a . m . ) M I D T E R M ~ F r i d a y , ~ O c t o b e r ~ 2 9 , ~} 1999$
There are 4 pages, with 6 problems.

## Problem 1

Give the mood and figure of the syllogism to the right, and fill in the Venn diagram [use more than one if needed] to determine if the syllogism is indeed valid. State whether the syllogism is valid under Modern Standards as well as under Aristotelian Standards.

Mood: $\qquad$ Figure: $\qquad$
Valid (Modern): $\qquad$

All M is S
No M is P
Some S is not P .


Valid (Aristotelian):

## Problem 2

Show that the following argument is valid by filling in the Lewis Carroll tree on the right, including appropriate numbers for the boxes.


1. $C D F=0$
2. $A^{\prime} C F^{\prime}=0$
3. $B D E=0$
4. $A^{\prime} C^{\prime} E^{\prime}=0$
5. $A^{\prime} B^{\prime} C^{\prime}=0$


## Problem 3

Given the following five formulas and their combined truth table
$\mathrm{F}_{1}: \neg R \vee Q$
$\mathrm{F}_{2}: R \vee((P \rightarrow R) \leftrightarrow Q)$
$\mathrm{F}_{3}: \neg Q \rightarrow Q$
$\mathrm{F}_{4}:(Q \leftrightarrow P) \rightarrow(Q \wedge(P \leftrightarrow Q))$
$\mathrm{F}_{5}: \neg R \leftrightarrow Q$

|  | $P$ | $Q$ | $R$ | $\mathrm{~F}_{1}$ | $\mathrm{~F}_{2}$ | $\mathrm{~F}_{3}$ | $\mathrm{~F}_{4}$ | $\mathrm{~F}_{5}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |  |  |  |
| 2. | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |  |  |  |
| 3. | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |  |  |  |
| 4. | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |  |  |  |
| 5. | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |  |  |  |
| 6. | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |  |  |  |
| 7. | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |  |  |  |
| 8. | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |  |  |  |

(a) What is the Conjunctive Normal Form of $\mathrm{F}_{1} \rightarrow \mathrm{~F}_{5}$ ?
(b) Is the set $\left\{\mathrm{F}_{1}, \neg \mathrm{~F}_{2}, \mathrm{~F}_{3}\right\}$ satisfiable? (Why?)
(c) Is the argument $\neg \mathrm{F}_{1}, \mathrm{~F}_{3} \therefore \mathrm{~F}_{4}$ valid? (Why?)

## Problem 4

Find the graph clauses for the labelled graph on the right, and state (with reasons) whether or not this set of clauses is satisfiable.


14
marks

## Problem 5

The following gives the first part of the completeness proof for the FŁ proof system. Fill in the reasons to justify Lemma D.0.5.

The Frege-Łukasiewicz Propositional Logic
Propositional Variables: $P, Q, \ldots$
Connectives: $\neg, \rightarrow$
Rule of inference: (modus ponens) $\frac{F, F \rightarrow G}{G}$
Axiom schemata:
A1: $F \rightarrow(G \rightarrow F)$
A2: $(\mathrm{F} \rightarrow(\mathrm{G} \rightarrow \mathrm{H})) \rightarrow((\mathrm{F} \rightarrow \mathrm{G}) \rightarrow(\mathrm{F} \rightarrow \mathrm{H}))$
A3: $(\neg \mathrm{F} \rightarrow \neg \mathrm{G}) \rightarrow(\mathrm{G} \rightarrow \mathrm{F})$
Lemma A: If $F$ is an axiom then $\vdash \mathrm{F}$.

Lemma B: If $F \in \mathcal{S}$ then $\mathcal{S} \vdash F$.

Lemma D.0.5: $\vdash F \rightarrow F$.

Proof. The following gives a derivation of $\mathrm{F} \rightarrow \mathrm{F}$ :

1. $\mathrm{F} \rightarrow((\mathrm{F} \rightarrow \mathrm{F}) \rightarrow \mathrm{F})$
2. $(\mathrm{F} \rightarrow((\mathrm{F} \rightarrow \mathrm{F}) \rightarrow \mathrm{F})) \rightarrow((\mathrm{F} \rightarrow(\mathrm{F} \rightarrow \mathrm{F})) \rightarrow(\mathrm{F} \rightarrow \mathrm{F}))$
3. $(\mathrm{F} \rightarrow(\mathrm{F} \rightarrow \mathrm{F})) \rightarrow(\mathrm{F} \rightarrow \mathrm{F})$
4. $\mathrm{F} \rightarrow(\mathrm{F} \rightarrow \mathrm{F})$
5. $\mathrm{F} \rightarrow \mathrm{F}$.

ID

## Problem 6

(a) Without assuming any set of connectives is adequate, show that $\mathcal{C}=\{\wedge, \neg\}$ is adequate.
(b) Use (a) to show that the Sheffer stroke $\mid$ is adequate.

