Name
ID
PMATH 330

Instructor: S. Burris

## NO AIDS PERMITTED.

There are 12 pages in this exam.
Make sure you have all 12 pages.

| Problem | (out of) | Marks |
| :---: | :---: | :---: |
| 1 | $(10)$ |  |
| 2 | $(10)$ |  |
| 3 | $(10)$ |  |
| 4 | $(10)$ |  |
| 5 | $(10)$ |  |
| 6 | $(10)$ |  |
| 7 | $(10)$ |  |
| 8 | $(10)$ |  |
| 9 | $(10)$ |  |
| 10 | $(10)$ |  |
| TOTAL | $(100)$ |  |

Name
ID

## Problem 1.

(a) Write out first-order sentences which express the following statements about natural numbers: (you may use the abbreviations $\operatorname{prime}(x)$ for a formula expressing ' $x$ is prime', $x \mid y$ for a formula expressing ' $x$ divides $y$ '.)

- Every natural number is the sum of four squares.
- Any two positive integers have a least common multiple.
- There are an infinite number of primes of the form $x^{2}+1$.
(b) Determine, by any means you know, whether the following two formulas are truth equivalent. Be sure to give your reasons.

$$
\begin{aligned}
& F(P, Q, R, S, T, U) \quad \text { is } \quad P \rightarrow(Q \rightarrow(R \rightarrow(S \rightarrow(T \rightarrow U)))) \\
& G(P, Q, R, S, T, U) \quad \text { is } \quad(P \wedge Q \wedge R \wedge S \wedge T) \rightarrow U
\end{aligned}
$$

Name
ID

## Problem 2.

Suppose you encounter three members $\mathbf{A}, \mathbf{B}, \mathbf{C}$ of the island of Tufa (remember that the Tu's always tell the truth, the Fa's always lie). They each give you a statement which we will assume you have translated into propositional logic as follows, where $A$ denotes the statement: " $\mathbf{A}$ is a Tu", etc:

- A says: $\neg(B \vee C \rightarrow \neg(\neg A \leftrightarrow B \wedge C))$
- B says: $(A \leftrightarrow C) \leftrightarrow(B \leftrightarrow(B \leftrightarrow C))$
- C says: $(A \vee B \vee C) \wedge(\neg A \vee \neg B \vee \neg C)$

From this information determine, as best possible, the tribe to which each of the three belongs.

Name
ID

## Problem 3.

You are given the following information about four minerals $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ that are found in ore samples at the Bre- X site in Indonesia:
(a) The case that either $\mathbf{A}$ is missing or $\mathbf{B}$ appears holds if and only if either $\mathbf{C}$ or $\mathbf{D}$ is missing.
(b) The case that either $\mathbf{B}$ or $\mathbf{C}$ appears holds if and only if either $\mathbf{A}$ or $\mathbf{D}$ is missing.
(c) The case that either $\mathbf{C}$ or $\mathbf{D}$ appears holds if and only if either $\mathbf{A}$ or $\mathbf{B}$ is missing.

Determine from this information, using the method of Boole, the most general conclusion that you can draw concerning only the two minerals $\mathbf{B}$ and $\mathbf{C}$. And be sure to express the final conclusion in English!

## Name

ID

## Problem 4.

Transform the following argument in first-order logic into a set of clauses, such that the set of clauses will be unsatisfiable if and only if the argument is valid. You do NOT need to test the argument for validity.

$$
\begin{aligned}
& \forall x \exists y((x<y) \vee(y<x)) \\
& \forall x \forall y((x<y) \rightarrow \exists z((x<z) \wedge(z<y)))
\end{aligned}
$$

Therefore $\exists x \forall y(\neg(x \approx y) \rightarrow(x<y))$

> Name
> ID

## Problem 5.

You are given the one-rule $\operatorname{TRS} \mathcal{R}=\{f g f g x \longrightarrow f g g x\}$, where $f, g$ are unary.
(a) Why is $\mathcal{R}$ terminating?
(b) Find all critical pairs of $\mathcal{R}$.
(c) Apply the Critical Pairs Lemma to determine if $\mathcal{R}$ is a normal form TRS.

Name
ID
Problem 6.
Fill in the reasons (Birkshoff's Rules) for the following derivation of $(x \cdot y) \cdot(y \cdot x) \approx 1$ from the set of equations defining idempotent monoids:

|  | EQUATION | REASON |
| :--- | :--- | :--- |
| 1. | $(x \cdot y) \cdot z \approx x \cdot(y \cdot z)$ | given |
| 2. | $x \cdot 1 \approx x$ | given |
| 3. | $1 \cdot x \approx x$ | given |
| 4. | $x \cdot x \approx 1$ | given |
| 5. | $y \cdot y \approx 1$ |  |
| 6. | $x \cdot(y \cdot y) \approx x \cdot 1$ |  |
| 7. | $x \cdot(y \cdot y) \approx x$ |  |
| 8. | $(x \cdot y) \cdot y \approx x \cdot(y \cdot y)$ |  |
| 9. | $(x \cdot y) \cdot y \approx x$ |  |
| 10. | $((x \cdot y) \cdot y) \cdot x \approx x \cdot x$ |  |
| 11. | $((x \cdot y) \cdot y) \cdot x \approx(x \cdot y) \cdot(y \cdot x)$ |  |
| 12. | $(x \cdot y) \cdot(y \cdot x) \approx((x \cdot y) \cdot y) \cdot x$ |  |
| 13. | $(x \cdot y) \cdot(y \cdot x) \approx x \cdot x$ |  |
| 14. | $(x \cdot y) \cdot(y \cdot x) \approx 1$ |  |

## Problem 7

(a) Fill in the Cayley table

| $\cdot$ | $a$ | $b$ |
| :--- | :--- | :--- |
| $a$ |  |  |
| $b$ |  |  |

to define a two-element algebraic structure $\mathbf{A}=(\{a, b, c\}, \cdot)$ that provides a counterexample to the following argument:

$$
\begin{aligned}
x \cdot x & \approx x \\
(x \cdot y) \cdot z & \approx x \cdot(y \cdot z) \\
\therefore x \cdot y & \approx y \cdot x
\end{aligned}
$$

Name
ID
(b) Show that the following sentence is not valid (where $R, S, T$ are unary predicates):

$$
\forall x \exists y \forall z((R x \rightarrow(S y \rightarrow T z)) \rightarrow((R x \rightarrow S y) \rightarrow T z))
$$

## Problem 8.

Consider the following 5 sentences in the language of directed graphs:

$$
\begin{aligned}
& \mathrm{F}_{1}: \quad \forall x(r x x) \\
& \mathrm{F}_{2}: \quad \exists x \forall y(r x y) \\
& \mathrm{F}_{3}: \quad \forall x \forall y \forall z(r x y \wedge r y z \rightarrow r x z) \\
& \mathrm{F}_{4}: \quad \forall x \forall y(r x y \rightarrow \exists z(r x z \wedge r z y)) \\
& \mathrm{F}_{5}: \quad \forall x \exists y \forall z(r x y \wedge(r x z \rightarrow r y z))
\end{aligned}
$$

and the following two directed graphs:
$\mathbf{G}_{1}=(G, r)$ where $G=\{0,1,2,3\}$ and $r=\{(0,1),(1,1),(2,1),(3,1),(3,2)\}$
$\mathbf{G}_{2}=(N, \mid)$ where $N=\{0,1,2, \ldots\}$, the non-negative integers, with the usual 'divides' relation.
Find the truth values of each of the above sentences in each of the above structures, and enter these values ( 0 or 1 ) in the table below.
[This question will be marked as follows: each correct answer is worth 1 mark; each incorrect answer receives a penalty of -1 ; each blank receives 0 marks. However, the lowest possible total mark for this question is 0 .]

|  | $F_{1}$ | $F_{2}$ | $F_{3}$ | $F_{4}$ | $F_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{G}_{1}$ |  |  |  |  |  |
| $\mathrm{G}_{2}$ |  |  |  |  |  |

Name
ID

## Problem 9

You are given the language $\mathcal{L}=\{r, a, b\}$ where $r$ is a binary relation symbol and $a, b$ are constant symbols. For the set $\mathcal{S}$ of clauses (in this language) given by

$$
\{r a b\} \quad\{\neg r x y, \neg r y z, r x z\} \quad\{\neg r x y, r y x\} \quad\{\neg r x x\}
$$

(a) Show $\mathcal{S}$ is not satisfiable by using resolution on ground instances.
(b) Show $\mathcal{S}$ is not satisfiable by using resolution with most general opp-unifiers.

## Name

ID

## Problem 10.

(a) Convert the following sentence (in the language of directed graphs) into an equivalent sentence in prenex form, and then skolemize it:

$$
\exists x(\exists y(\forall x(r x y) \vee \exists z(r y z)) \rightarrow \neg \exists y(r y x))
$$

(b) Let $\mathcal{L}$ be the first-order language which consists of one binary relation symbol $r$ and one unary function symbol $f$, and let $\mathbf{S}$ be the $\mathcal{L}$-structure given by:

$$
\left.\mathbf{S}=\{a, b\} \quad \begin{array}{c|cc}
r & a & b \\
\hline a & 1 & 1 \\
b & 0 & 1
\end{array} \quad \begin{array}{l} 
\\
\hline a
\end{array}\right) f
$$

Let $\mathrm{F}(x, y)$ be the formula $\exists z(f z \approx y \vee \forall z((r x z) \wedge(r z y)) \vee(r f z y))$ Find the relation $\mathrm{F}^{\mathrm{S}}$ which $F$ defines in $\mathbf{S}$.

## Alternate Problem or Bonus Homework.

This problem is optional. It may be used to replace one of the first 10, or it may be used as the equivalent of a bonus problem assignment. If you want to use this problem, please circle which of the Problems $1-10$ this is to replace, or circle 'Bonus' if you would like it to be a bonus problem assignment.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Bonus |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(a) State and prove the Compactness Theorem for Propositional Logic.
(b) Apply the Compactness Theorem for First-Order Logic to show that there are non-standard models of $\operatorname{Th}(\mathbf{N})$, the first-order theory of the natural numbers $\mathbf{N}=(N,+, \cdot,<, 0,1)$.

Name
ID

