(COVER PAGE)

- Instructor: S. Burris
- Course: PMath 330 (Check your section: $\square \S 1$ at 10:30 a.m. $\square \S 2$ at 1:30 p.m.
- No Aids
- Marks

1.	$/ 8$
2.	$/ 10$
3.	$/ 10$
4.	$/ 8$
5.	$/ 9$
6.	$/ 8$
7.	$/ 10$
8.	$/ 8$
9.	$/ 9$
10.	$/ 10$
11.	$/ 6$
12.	$/ 10$

Problem 1

You are given the following information about four classes
A, B, C and D.
(a) $A \cup B \subseteq C^{\prime} \cup D^{\prime}$
(b) $C \cup D \subseteq A \cup B$

One can express the two facts above as a single equation $\mathrm{E}(A, B, C, D)=0$ where:
$\mathrm{E}(A, B, C, D)=$
Determine from this information, using the method of Boole, the most general conclusion that you can draw concerning only the two classes C and D.

Problem 2

There are two tribes on the island of Tufa - the Tu's, who always tell the marks truth, and the Fa's, who always lie. A traveller encountered three residents of the island, A, B, and C , and each made a statement to the traveller:
(a) A said " B or C is telling the truth — but not both of them".
(b) B said " Some of us are telling the truth".
(c) C said "If A is lying then B is telling the truth iff I am lying".

Translate this into propositional logic, and use propositional logic to determine as best possible which tribes A, B, and C belong to.

Problem 3

Fill in the reasons for the following resolution argument:

		10. $\{Q, \neg R\}$
1. $\{P, Q\}$	given	11. $\{Q, \neg T\}$
2. $\{R, S\}$	given	
		12. $\{\neg S, \neg T\}$
3. $\{T, U\}$	given	13. $\{\neg R, \neg U\}$
4. $\{\neg P, \neg R\}$	given	
5. $\{\neg Q, \neg S\}$	given	14. $\{S, \neg T\}$
6.		15. $\{S, \neg U\}$
6. $\{\neg P, \neg T\}$	given	16. $\{\neg U\}$
7. $\{\neg Q, \neg U\}$	given	
8. $\{\neg R, \neg T\}$	given	17. $\{\neg T$
		18. $\{U\}$
9. $\{\neg S, \neg U\}$	given	19. $\}$

Problem 4

Give explict formulas that express the following standard connectives in marks terms of the Sheffer connective ' \mid ' (and propositional variables):

$$
\begin{aligned}
& \neg P \sim \\
& P \vee Q \sim \\
& P \wedge Q \sim \\
& P \rightarrow Q \sim \\
& \hline
\end{aligned}
$$

Problem 5

9

Find a two-element counterexample to the following equational argu- marks ment:
$x \cdot y \approx y$
$x+y \approx y+x$
$\therefore(x+y) \cdot z \approx(x \cdot z)+(y \cdot z)$

+	a	b
a		
b		

\cdot	a	b
a		
b		

Find a three-element counterexample to the following argument:

$$
\begin{aligned}
& f f f x \approx f f x \\
& \therefore f f x \approx f x
\end{aligned}
$$

Problem 6

Fill in the reasons for the steps in the following derivation:
1.
2.

$$
x \cdot x^{-1} \approx 1
$$

3.

$$
(x \cdot y) \cdot z \quad \approx \quad x \cdot(y \cdot z)
$$

$$
1 \approx x \cdot x^{-1}
$$

5.

$1 \cdot\left(x^{-1}\right)^{-1} \approx\left(x \cdot x^{-1}\right) \cdot\left(x^{-1}\right)^{-1}$
6. $\left(x \cdot x^{-1}\right) \cdot\left(x^{-1}\right)^{-1} \approx x \cdot\left(x^{-1} \cdot\left(x^{-1}\right)^{-1}\right)$
7.
8. $x^{-1} \cdot\left(x^{-1}\right)^{-1} \approx 1$
9. $x \cdot\left(x^{-1} \cdot\left(x^{-1}\right)^{-1}\right) \approx x \cdot 1$
10. $x \cdot\left(x^{-1} \cdot\left(x^{-1}\right)^{-1}\right) \approx x$
11.

$$
1 \cdot\left(x^{-1}\right)^{-1} \approx x
$$

Problem 7

You are given the one-rule $\operatorname{TRS} \mathcal{R}=\{g f g f u \longrightarrow g f f u\}$, where f, g are $\mathbf{m a r k S}$ unary.
(a) Why is \mathcal{R} terminating?
(b) Find all nontrivial critical pairs of \mathcal{R}.
(c) Apply the Critical Pairs Lemma to determine if \mathcal{R} is a normal form TRS.

Problem 8

r is a binary relation symbol and f a unary function symbol. Fill in the marks reasons for the following resolution derivation:

1. $\{\neg r f x x\}$
2. $\{\neg r x y, \neg r x z, r y z\}\}$
3. $\{r f f f x x\}$
4. $\{\neg r x y, r f x f y\}$
5. $\{r f f x x\}$
6. $\{\neg r x f y, \neg r x y\}$
7. $\{\neg r f f f x f x\}$
8. $\{\neg r f f x x\}$
9. $\}$
given
given
\qquad
given
given
\qquad
\qquad
\qquad

Problem 9

Determine the binary relation defined by the formula

9
marks
$F(x, y)=\forall u(r x u \rightarrow \neg r u y)$ on the following directed graph:

Problem 10

Consider the following 5 sentences in the language of directed graphs:

$$
\begin{array}{ll}
\mathrm{F}_{1}: \forall x \neg(r x x) & \mathrm{F}_{2}: \exists x \forall y(r y x) \\
\mathrm{F}_{3}: \forall x \forall y \forall z(\neg r x y \vee \neg r y z \vee r x z) & \mathrm{F}_{4}: \forall x \forall y(\neg r x y \vee \exists z(r x z \wedge r z y)) \\
\mathrm{F}_{5}: \forall x \exists y \forall z(r x y \rightarrow(\neg r x z \vee r y z)) &
\end{array}
$$

and the following two directed graphs:
$\mathbf{G}_{1}=(G, r)$ where $G=\{0,1\}$ and $r=\{(0,1),(1,0)\}$
$\mathbf{G}_{2}=(N, \mid)$ where $N=\{0,1,2, \ldots\}$, the non-negative integers, with the usual 'divides' relation.

Find the truth values of each of the above sentences in each of the above structures, and enter these values (0 or 1) in the table below.
[This question will be marked as follows: each correct answer is worth 1 mark; each incorrect answer receives a penalty of -1 ; each blank receives 0 marks. However, the lowest possible total mark for this question is 0 .]

	F_{1}	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	$\mathrm{~F}_{4}$	$\mathrm{~F}_{5}$
\mathbf{G}_{1}					
\mathbf{G}_{2}					

Problem 11

- Put the following formula in prenex form:

$$
\forall x(x<u) \rightarrow[\exists v \forall w(x+v<x+w) \rightarrow \forall z(z \cdot v<z \cdot w)]
$$

Answer:

- Skolemize the following formula:

$$
\exists x \exists y \forall z \exists w(x+y<z \leftrightarrow y<z+w)
$$

Answer:

Problem 12

Convert the following argument into a set \mathcal{C} of clauses such that the argu- marks ment is valid iff the set \mathcal{C} is not satisfiable.

$$
\forall x(\exists y(x \cdot y \leq x) \rightarrow \neg \exists y \forall z((y+z<x \cdot z) \wedge \neg(y \cdot x \leq z))) \quad \therefore \exists x \forall y(x+y<x \cdot y)
$$

Answer:

