The following output was generated by S.O.B.B:

$$\begin{array}{llll} 14 & (x \cdot y) + (x \cdot z) & = & x \cdot (y + z) \\ 100 & (x \cdot y) + (z \cdot x) & = & x \cdot (y + z) \\ 127 & x \cdot (y \cdot (z + x)) & = & y \cdot x \\ 628 & x \cdot (y + (z \cdot (u + x))) & = & x \cdot (y + z) \quad [\text{para_from } 127.1.1, \ 14.1.1.2; \ \text{demod } 100 \ ; \text{flip.1}] \end{array}$$

Give the details of how S.O.B.B. found equation 628. (Follow the format in the supplementary page on Critical Pairs and Equational Theorem Proving.)

DETAILS: We want to find the critical pair equation for the following pair of equations by unifying the boxed terms:

127
$$x \cdot (y \cdot (z+x)) = y \cdot x$$

14 $(x \cdot y) + (x \cdot z) = x \cdot (y+z)$

The first thing to do is to make the variables disjoint:

The most general unifier of the boxed terms is

$$\mu = \left(\begin{array}{c} X \leftarrow x \\ Z \leftarrow y \cdot (z+x) \end{array}\right)$$

Applying this to 127 and 14 gives

From this we have the Critical Pair Equation:

$$(**)$$
 $(x \cdot Y) + (y \cdot x) = x \cdot (Y + (y \cdot (z + x)))$

By applying 100 to the left side of (**) we obtain:

$$x \cdot (Y+y) = x \cdot (Y + (y \cdot (z+x)))$$

Flip, and change the variables, to get

$$x \cdot (y + (z \cdot (u+x))) = x \cdot (y+z)$$

Structures

Fill in the table for the following directed graph:

	a	b	c	d
\overline{a}	1	1	0	0
b	1	0	0	1
c	1	1	1	0
d	1	0	1	0

Draw the directed graph for the following table:

	a	b	c	d
a	1	0	1	0
b	0	1	1	0
c	1	0	0	1
d	1	0	1	0

Herbrand Universe

Suppose that a first-order language has only a constant symbol a, a binary function symbol f, and a binary relation symbol r.

List the elements of the second level S_2 of the Herbrand universe:

$$S_2 = \underbrace{\{a, faa, ffaaa, fafaa, ffaafaa\}}$$

List all of the ground clauses that one can make from the symmetry clause $\{\neg rxy, ryx\}$ using just the portion of the Herbrand universe called S_1 .

ANSWER:

$$\{\neg raa, raa\}$$

 $\{\neg rafaa, rfaaa\}$
 $\{\neg rfaaa, rafaa\}$
 $\{\neg rfaafaa, rfaafaa\}$

Clauses

Let **S** be the structure on $\{0,1,2\}$ with a unary operation defined by $fx = x+1 \pmod 3$. The relation < is the usual, that is, 0 < 1 < 2. Given the literals

$$\mathsf{L}_1 \text{ is } \neg (fx < y) \qquad \mathsf{L}_2 \text{ is } x < fy$$

determine all pairs (a,b) that satisfy the clause $\mathsf{C} = \{\mathsf{L}_1,\mathsf{L}_2\}$ in $\mathbf S$ by filling in the following:

\boldsymbol{x}	y	fx	fy	$\int fx < y$	$\neg (fx < y)$	x < fy	C
0	0	1	1	0	1	1	1
0	1	1	2	0	1	1	1
0	2	1	0	1	0	0	0
1	0	2	1	0	1	0	1
1	1	2	2	0	1	1	1
1	2	2	0	0	1	0	1
2	0	0	1	0	1	0	1
2	1	0	2	1	0	0	0
2	2	0	0	1	0	0	0

Does **S** satisfy the clause **C**? NO

Opp-unification: Suppose our first-order language has a unary relation symbol r and a binary operation symbol g. Show that the two clauses $\{rgxgyx, rggyzw\}$ and $\{\neg rgxggyzw\}$ are opp-unifiable, and find the most general opp-unifier (σ_1, σ_2) . [Change x, y, z, w in the second clause to X, Y, Z, W.]

r	g	\boldsymbol{x}	g	y	\boldsymbol{x}							
r	g	g	y	z	w							
r	g	X	g	g	Y	Z	W					

$$\downarrow (x \leftarrow X)$$

r	g	X	g	y	X							
r	g	g	y	z	w							
r	g	X	g	g	Y	Z	W					

$$\downarrow$$
 $(X \leftarrow gyz)$

r	g	g	y	z	g	y	g	y	z				
r	g	g	y	z	w								
r	g	g	y	z	g	g	Y	Z	W				

$$\downarrow (w \leftarrow gygyz)$$

	r	g	g	y	z	g	y	g	y	z				
	r	g	g	y	z	g	y	g	y	z				
Г	r	g	g	y	z	g	g	Y	Z	W				

$$\downarrow \quad (y \leftarrow gYZ)$$

r	g	g	g	Y	Z	z	g	g	Y	Z	g	g	Y	Z	z	
r	g	g	g	Y	Z	z	g	g	Y	Z	g	g	Y	Z	z	
r	g	g	g	Y	Z	z	g	g	Y	Z	W					

$$\downarrow (W \leftarrow ggYZz)$$

r	g	g	g	Y	Z	z	g	g	Y	Z	g	g	Y	Z	z	
r	g	g	g	Y	Z	z	g	g	Y	Z	g	g	Y	Z	z	
r	g	g	g	Y	Z	z	g	g	Y	Z	g	g	Y	Z	z	

so $x \leftarrow ggYZz, \, w \leftarrow ggYZggYZz, \, X \leftarrow ggYZz, \, y \leftarrow gYZ, \, W \leftarrow ggYZz.$

Thus, with a, b, c being any three distinct variables,

$$\sigma_{1} = \begin{pmatrix} x \leftarrow ggabc \\ y \leftarrow gab \\ z \leftarrow c \\ w \leftarrow ggabggabc \end{pmatrix} \quad \text{and} \quad \sigma_{2} = \begin{pmatrix} x \leftarrow ggabc \\ y \leftarrow a \\ z \leftarrow b \\ w \leftarrow ggabc \end{pmatrix}$$

Resolution Theorem Proving

For f a unary function symbol and r a binary relation symbol fill in the reasons for the following resolution derivation:

$1. \{rxfx\}$	given
2. $\{\neg rf00\}$	given
3. $\{\neg rxy, ryx\}$	given
$4. \{rfxx\}$	Res 1,3
5. {}	Res 2,4

The following uses ground clauses from the given clauses 1–3 of the previous problem. Identify the source of each ground clause (e.g., clause 3) that is a ground instance of one of the above given clauses, and give reasons (i.e., line numbers) for the resolution steps:

1. $\{r0f0\}$	Clause1
2. $\{\neg r0f0, rf00\}$	Clause 3
3. $\{\neg rf00\}$	Clause 2
4. $\{\neg r0f0\}$	Res 2,3
5. { }	Res 1,4