A RESOLUTION DERIVATION

Given the collection of 8 clauses

1.
$$\{Q, S\}$$
 2. $\{R, S\}$
 3. $\{\neg P, Q\}$
 4. $\{P, R\}$

 5. $\{P, \neg Q\}$
 6. $\{\neg P, \neg R\}$
 7. $\{\neg Q, \neg S\}$
 8. $\{\neg R, \neg S\}$

fill in the reasons for the following resolution derivation:

9.	$\{Q, \neg R\}$	1, 8	13. $\{Q\}$	9,11
10.	$\{\neg Q, R\}$	2,7	14. $\{\neg Q\}$	10, 12
11.	$\{Q, R\}$	3,4	15. { }	13, 14
12.	$\{\neg Q, \neg R\}$	5, 6		

Is it possible to find an assignment of truth values for the propositional variables P, Q, R, S that will satisfy the original eight clauses? (if yes, give one) NO

Given the collection \mathcal{S} of 6 clauses

1.
$$\{P, \neg Q\}$$
 2. $\{Q, S\}$ 3. $\{P, R\}$
4. $\{\neg P, \neg R\}$ 5. $\{\neg Q, \neg S\}$ 6. $\{\neg R, \neg S\}$

fill in the reasons for the following resolution steps:

7.	$\{Q, \neg R\}$	2, 6	14. $\{P, S\}$	1, 2
8.	$\{P, \neg S\}$	3, 6	15. $\{P, \neg R\}$	1,7
9.	$\{S, \neg S\}$	2, 5	16. $\{P\}$	3, 15
10.	$\{Q, \neg Q\}$	2, 5	17. $\{\neg R, S\}$	2,11
11.	$\{\neg Q, \neg R\}$	1, 4	18. $\{P, Q\}$	2, 8
12.	$\{P, \neg P\}$	3, 4	19. $\{\neg R\}$	4,15
13.	$\{R, \neg R\}$	3, 4		

Can you obtain any other clauses by resolution? What does this say about the satisfiability of S?

Apply the Davis-Putnam Procedure to the First Problem, showing just the S_i' and U_i steps (as done for the resolution on R below).

Resolution on R:

Resolution on P:

Resolution on Q:

$$\begin{array}{cccc} (1,2) & (1,4) & (2,3) \\ \mathcal{U}_{3}: \ \{S,\neg S\} & \{S\} & \{\neg S\} \end{array}$$

Resolution on S:

Given the collection of five Horn clauses

1.
$$\{\neg P, Q\}$$
 2. $\{P\}$ 3. $\{\neg R\}$ 4. $\{S, \neg Q\}$ 5. $\{\neg S, R\}$

find all clauses that can be derived using unit resolution:

	Clause	Reason	
6.	$\{Q\}$	1,2	
7.	$\{\neg S\}$	3, 5	
8.	$\{S\}$	4, 6	
9.	$\{\neg Q\}$	4,7	
10.	$\{\neg P\}$	1,9	
11.	$\{R\}$	5, 8	
12.	{ }	7, 8	

Given the clauses $\{\neg P, Q, R\}$ and $\{\neg Q, R, S\}$ prove, using just the definitions, that if \vec{e} is a truth evaluation of P, Q, R, S that makes the two clauses true then it also makes the clause $\{\neg P, R, S\}$, obtained by resolving the two over Q, true.

First note that \vec{e} makes Q true or it makes Q false.

Suppose \vec{e} makes Q true. Then, as \vec{e} makes the second clause $\{\neg Q, R, S\}$ true it follows that it must make $\{R, S\}$ true, and thus it makes the resolvent $\{\neg P, R, S\}$ true.

On the other hand, suppose that \vec{e} makes Q false. Then, as \vec{e} makes the first clause $\{\neg P, Q, R\}$ true it follows that it must make $\{\neg P, R\}$ true, and thus it makes the resolvent $\{\neg P, R, S\}$ true.

In either case, \vec{e} makes the resolvent true.

Consider the propositional argument:

$$F_1: (P \to \neg Q) \to R$$

$$F_2: P \lor \neg (Q \to R)$$

$$F: P \leftrightarrow (Q \leftrightarrow R)$$

Give the conjunctive normal form for each of the following formulas:

$$\mathsf{F}_1: \quad (\neg P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (P \lor Q \lor R)$$

$$\mathsf{F}_2: \quad (P \lor \neg Q \lor \neg R) \land (P \lor Q \lor \neg R) \land (P \lor Q \lor R)$$

$$\neg \mathsf{F}: \quad (\neg P \lor \neg Q \lor \neg R) \land (\neg P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (P \lor Q \lor \neg R)$$

From this derive a set S of clauses such that $F_1, F_2 \therefore F$ is valid iff $\neg Sat(S)$. S has the clauses:

1.	$\neg P \lor Q \lor R$	4.	$P \lor \neg Q \lor \neg R$
2.	$P \vee \neg Q \vee R$	5.	$P \lor Q \lor \neg R$
3.	$P \lor Q \lor R$	6.	$\neg P \lor \neg Q \lor \neg R$

Is \mathcal{S} satisfiable? (Reasons)

YES, by setting PQR equal to 110, or to 101.

Is the original argument valid? (Reasons)

NO, as the set \mathcal{S} of clauses (1–6) is satisfiable.