A Resolution Derivation

Given the collection of 8 clauses

1. $\{Q, S\}$
2. $\{R, S\}$
3. $\{\neg P, Q\}$
4. $\{P, R\}$
5. $\{P, \neg Q\}$
6. $\{\neg P, \neg R\}$
7. $\{\neg Q, \neg S\}$
8. $\{\neg R, \neg S\}$
fill in the reasons for the following resolution derivation:

Is it possible to find an assignment of truth values for the propositional variables P, Q, R, S that will satisfy the original eight clauses? (if yes, give one) NO

Given the collection \mathcal{S} of 6 clauses

1. $\{P, \neg Q\}$
2. $\{Q, S\}$
3. $\{P, R\}$
4. $\{\neg P, \neg R\}$
5. $\{\neg Q, \neg S\}$
6. $\{\neg R, \neg S\}$
fill in the reasons for the following resolution steps:

7. $\{Q, \neg R\}$	2,6	14. $\{P, S\}$	1,2
8. $\{P, \neg S\}$	3,6	15. $\{P, \neg R\}$	1,7
9. $\{S, \neg S\}$	2,5	16. $\{P\}$	3,15
10. $\{Q, \neg Q\}$	2,5	17. $\{\neg R, S\}$	2,11
11. $\{\neg Q, \neg R\}$	1,4	18. $\{P, Q\}$	2,8
12. $\{P, \neg P\}$	3,4	19. $\{\neg R\}$	4,15
13. $\{R, \neg R\}$	3,4		

Can you obtain any other clauses by resolution?
What does this say about the satisfiability of \mathcal{S} ?

Apply the Davis-Putnam Procedure to the First Problem, showing just the $\mathcal{S}_{i}{ }^{\prime}$ and \mathcal{U}_{i} steps (as done for the resolution on R below).

Resolution on R :

(1)
$\begin{array}{cccccc}\mathcal{S}_{1}: & \{Q, S\} & \{R, S\} & \{\neg P, Q\} & \{P, R\} & \{P, \neg Q\} \\ & (1,3) & (1,4) & (2,3) & (2,4) \\ \mathcal{U}_{1}: & \{\neg P, S\} & \{S, \neg S\} & \{P, \neg P\} & \{P, \neg S\}\end{array}$
Resolution on P :
(1)
(2)
(3)
$\mathcal{S}_{2}{ }^{\prime}:\{Q, S\} \quad\{\neg P, Q\} \quad\{P, \neg Q\} \quad\{\neg Q, \neg S\} \quad\{\neg P, S\} \quad\{P, \neg S\}$

| $(1,2)$ | $(1,4)$ | $(2,3)$ |
| :--- | :--- | :--- |$(3,4)$

$\mathcal{U}_{2}:\{Q, \neg Q\} \quad\{Q, \neg S\} \quad\{\neg Q, S\} \quad\{S, \neg S\}$

Resolution on Q :

$$
\left.\begin{array}{cccc}
& (1) & (2) & (3) \tag{4}\\
\mathcal{S}_{3}^{\prime}: & \{Q, S\} & \{\neg Q, \neg S\} & \{Q, \neg S\}
\end{array}\right)\{\neg Q, S\}
$$

$\mathcal{U}_{3}: \begin{array}{ccc}(1,2) & (1,4) & (2,3) \\ \{S, \neg S\} & \{S\} & \{\neg S\}\end{array}$

Resolution on S :

(1)
(2)
$\mathcal{S}_{4}{ }^{\prime}:\{S\} \quad\{\neg S\}$
$(1,2)$
$\mathcal{U}_{4}:\{ \}$

Given the collection of five Horn clauses

1. $\{\neg P, Q\}$
2. $\{P\}$
3. $\{\neg R\}$
4. $\{S, \neg Q\}$
5. $\{\neg S, R\}$
find all clauses that can be derived using unit resolution:

	Clause	Reason
6.	$\{Q\}$	1,2
7.	$\{\neg S\}$	3,5
8.	$\{S\}$	4,6
	$\{\neg Q\}$	4,7
10.	$\{\neg P\}$	1,9
11.	$\{R\}$	5,8
12.	$\}$	7,8

Given the clauses $\{\neg P, Q, R\}$ and $\{\neg Q, R, S\}$ prove, using just the definitions, that if \vec{e} is a truth evaluation of P, Q, R, S that makes the two clauses true then it also makes the clause $\{\neg P, R, S\}$, obtained by resolving the two over Q, true.

First note that \vec{e} makes Q true or it makes Q false.
Suppose \vec{e} makes Q true. Then, as \vec{e} makes the second clause $\{\neg Q, R, S\}$ true it follows that it must make $\{R, S\}$ true, and thus it makes the resolvent $\{\neg P, R, S\}$ true.

On the other hand, suppose that \vec{e} makes Q false. Then, as \vec{e} makes the first clause $\{\neg P, Q, R\}$ true it follows that it must make $\{\neg P, R\}$ true, and thus it makes the resolvent $\{\neg P, R, S\}$ true.

In either case, \vec{e} makes the resolvent true.

Consider the propositional argument:

$$
\begin{array}{ll}
\mathrm{F}_{1}: & (P \rightarrow \neg Q) \rightarrow R \\
\mathrm{~F}_{2}: & P \vee \neg(Q \rightarrow R) \\
\hline \mathrm{F}: & P \leftrightarrow(Q \leftrightarrow R)
\end{array}
$$

Give the conjunctive normal form for each of the following formulas:

$$
\begin{aligned}
& \mathrm{F}_{1}: \frac{(\neg P \vee Q \vee R) \wedge(P \vee \neg Q \vee R) \wedge(P \vee Q \vee R)}{} \\
& \mathrm{F}_{2}: \frac{(P \vee \neg Q \vee \neg R) \wedge(P \vee Q \vee \neg R) \wedge(P \vee Q \vee R)}{} \\
& \neg \mathrm{F}: \quad(\neg P \vee \neg Q \vee \neg R) \wedge(\neg P \vee Q \vee R) \wedge(P \vee \neg Q \vee R) \wedge(P \vee Q \vee \neg R)
\end{aligned}
$$

From this derive a set \mathcal{S} of clauses such that $\mathrm{F}_{1}, \mathrm{~F}_{2} \therefore \mathrm{~F}$ is valid iff $\neg \operatorname{Sat}(\mathcal{S})$. \mathcal{S} has the clauses:

1. $\neg P \vee Q \vee R$
2. $P \vee \neg Q \vee R$
3. $P \vee Q \vee R$
4. $\quad P \vee \neg Q \vee \neg R$
5. $\quad P \vee Q \vee \neg R$
6. $\neg P \vee \neg Q \vee \neg R$

Is \mathcal{S} satisfiable? (Reasons)

YES, by setting $P Q R$ equal to 110 , or to 101.

Is the original argument valid? (Reasons)

NO, as the set \mathcal{S} of clauses $(1-6)$ is satisfiable.

