A Combined Truth Table

	P	Q	R	S	F 1	F 2	F 3	F 4	F 5	F 6	F 7	F 8	F 9	F 10	F 11	F 12
1	1	1	1	1	0	1	0	1	0	0	1	0	0	1	1	1
2	1	1	1	0	0	1	1	1	1	1	1	0	0	1	1	1
3	1	1	0	1	0	0	0	1	0	0	0	0	0	1	1	0
4	1	1	0	0	0	0	1	1	1	1	0	0	0	1	1	0
5	1	0	1	1	1	0	0	0	0	1	0	1	0	1	1	0
6	1	0	1	0	1	0	1	0	0	1	0	1	0	1	1	0
7	1	0	0	1	1	0	0	1	0	1	0	1	0	1	1	0
8	1	0	0	0	1	0	1	1	0	1	0	0	0	1	1	0
9	0	1	1	1	0	0	1	0	1	0	0	0	0	0	1	0
10	0	1	1	0	0	0	0	0	0	1	0	0	0	1	1	0
11	0	1	0	1	0	0	1	1	1	0	0	0	0	0	1	0
12	0	1	0	0	0	0	1	1	0	1	0	0	0	1	1	0
13	0	0	1	1	1	0	1	0	1	1	0	0	0	1	1	0
14	0	0	1	0	0	0	0	0	0	1	0	0	0	1	1	0
15	0	0	0	1	0	0	1	1	0	1	0	0	0	0	1	0
16	0	0	0	0	0	0	1	1	0	1	0	0	0	1	1	0

- Which of the formulas F1-F12 are truth equivalent? F2 \sim F7 \sim F12.
- Which of the formulas F1-F12 are tautologies? \qquad
- Which of the formulas F1-F12 are contradictions?

F9

- Determine if the following arguments are valid. If not, cite the number of a row of the truth table that refutes the argument.
(a) F1,F5,F10 \therefore F8 ANS No (Row 13)
(b) F1,F3,F4,F5,F6,F7,F10 \therefore F8 ANS
Yes
- Determine if the following collections of formulas are satisfiable. If so, cite the number of a row of the truth table that satisfies them.
(a) F1,F5,F6 ANS_ Yes (Row
(b) F3,F4,F6,F8 ANS \qquad
- Find the disjunctive normal form of F 1 (with respect to the variables P, Q, R, S).

$$
(P \wedge \neg Q \wedge R \wedge S) \vee(P \wedge \neg Q \wedge R \wedge \neg S) \vee(P \wedge \neg Q \wedge \neg R \wedge S) \vee(P \wedge \neg Q \wedge \neg R \wedge \neg S) \vee(\neg P \wedge \neg Q \wedge R \wedge S)
$$

- Find the conjunctive normal form of $\mathbf{F} 10$ (with respect to the variables P, Q, R, S).

$$
(P \vee \neg Q \vee \neg R \vee \neg S) \wedge(P \vee \neg Q \vee R \vee \neg S) \wedge(P \vee Q \vee R \vee \neg S)
$$

Translate the following argument (of Lewis Carroll) into propositional formulas. Then by using the premisses, or equivalent propositions, fill in the sequence of implications that shows the conclusion is valid.

1. No shark ever doubts that it is well fitted out.
2. A fish, that cannot dance a minuet, is contemptible.
3. No fish is quite certain that it is well fitted out, unless it has three rows of teeth,
4. All fishes, except sharks, are kind to children.
5. No heavy fish can dance a minuet.
6. A fish with three rows of teeth is to be respected.

Therefore, heavy fish are kind to children.

1. \qquad
2.

$$
\neg D \rightarrow C
$$

3.

$$
F \rightarrow T
$$

4.

$$
\neg S \rightarrow K
$$

5.

$$
H \rightarrow \neg D
$$

6. \qquad

$$
H \rightarrow K
$$

$$
H \rightarrow \neg \underline{D} \rightarrow \underline{C} \rightarrow \underline{\neg T} \rightarrow \underline{\neg} \rightarrow \underline{\square} \rightarrow \underline{S} \rightarrow K .
$$

Find a derivation of the tautology

$$
P \rightarrow(Q \rightarrow(P \rightarrow Q))
$$

using the FŁ proof system. [Hint: It can be done in 3 lines!]
ANSWER:

1. $Q \rightarrow(P \rightarrow Q)$

Axiom 1
2. $(Q \rightarrow(P \rightarrow Q)) \rightarrow(P \rightarrow(Q \rightarrow(P \rightarrow Q))) \quad$ Axiom 1
3. $P \rightarrow(Q \rightarrow(P \rightarrow Q))$

1,2 Modus Ponens

Here is a proof that there is a derivation of the same tautology. You may use, as reasons, any of the steps before Theorem D.0.19 in Appendix D.

Reason

1. $P, Q \quad \vdash P \rightarrow(Q \rightarrow(P \rightarrow Q))$
D.0.18
2. $P, \neg Q \quad \vdash \quad P \rightarrow(Q \rightarrow(P \rightarrow Q))$
D.0.18
3. $P \quad \vdash P \rightarrow(Q \rightarrow(P \rightarrow Q)) \xrightarrow{1,2}$ D.0.16
4. $\quad \neg P, Q \quad \vdash P \rightarrow(Q \rightarrow(P \rightarrow Q))$
D.0.18
5. $\neg P, \neg Q \vdash P \rightarrow(Q \rightarrow(P \rightarrow Q))$
D.0.18
6. $\neg P \quad \vdash P \rightarrow(Q \rightarrow(P \rightarrow Q)) \quad 4,5$ D.0.16
7.

$$
\vdash P \rightarrow(Q \rightarrow(P \rightarrow Q)) \quad \text { 3, } 6 \text { D.0.16 }
$$

