Equivalent Formulas

In the following table you are asked to consider whether or not certain formulas are equivalent. The \Box s in the left column are to be replaced by the appropriate binary connective in each of the successive columns. For example, consider the row starting with $P \Box P \sim P$. Now go over to the column with the header \wedge . The question is whether or not $P \wedge P \sim P$. If the formulas are equivalent, put a check mark ($\sqrt{}$) in the box. Otherwise leave the box empty.

	\vee	\wedge	\rightarrow	\leftrightarrow		人
$P \Box P \sim P$	\checkmark	\checkmark				
$P \Box (P \Box P) \sim (P \Box P) \Box P$	\checkmark	\checkmark			\checkmark	\checkmark
$P \square Q \sim Q \square P$	\checkmark	\checkmark			\checkmark	\checkmark
$P \square (Q \square P) \sim P$						
$P \Box (Q \Box R) \sim (P \Box Q) \Box R)$	\checkmark	\checkmark		\checkmark		

Adequate Sets of Connectives

Circle (or highlight) the formulas among $0, 1, P, \neg P$ that can be represented by a formula F(P) using (only) the connectives in C:

Given				
$\mathcal{C} = \{ \lor \}$	0	1	Р	$\neg P$
$\mathcal{C} = \{ ightarrow \}$	0	1	Р	$\neg P$
$\mathcal{C} = \{\leftrightarrow, \rightarrow\}$	0	1	Р	$\neg P$
$\mathcal{C} = \{\wedge, 1\}$	0	1	Р	$\neg P$

Circle (or highlight) the connectives that can be realized using the connectives in C:

Given				
$\mathcal{C} = \{ \rightarrow, \lor \}$	\vee	\wedge	\rightarrow	\leftrightarrow
$\mathcal{C} = \{\wedge, \leftrightarrow\}$	\vee	\wedge	\rightarrow	\leftrightarrow
$\mathcal{C} = \{\neg, \wedge\}$	\vee	\wedge	\rightarrow	\leftrightarrow
$\mathcal{C} = \{ ightarrow, \leftrightarrow \}$	\vee	\wedge	\rightarrow	\leftrightarrow

Substitution/Replacement

In each of the following inferences you are to choose the most inclusive answer for how the inference could be accomplished. The four choices are: **substitution**, **replacement**, **both**, **neither**.

1.	$\frac{\neg \neg P \sim P}{\neg \neg \neg P \sim \neg P}$	Both
2.	$\frac{P \ \sim \ Q}{P \rightarrow P \ \sim \ Q \rightarrow Q}$	Substitution
3.	$\frac{P \wedge \neg Q \sim \neg (P \to Q)}{Q \wedge \neg P \sim \neg (Q \to P)}$	Substitution
4.	$\frac{P \lor Q \sim Q \lor P}{(P \lor Q) \rightarrow (P \lor Q) \sim (Q \lor P) \rightarrow (P \lor Q)}$	Replacement
5.	$\frac{P \to (Q \to P) \sim 1}{(Q \to P) \to (P \to (Q \to P)) \sim 1}$	Substitution

More on Adequate Connectives

Determine if the binary connective \triangle defined by $P \triangle Q \sim P \land \neg Q$ is adequate. Give Reasons! [Either show that some adequate set of connectives can be expressed using \triangle , or prove that some propositional formula cannot be expressed using \triangle .]

Consider the formulas F(P) that one can express using \triangle .

One certainly has P; and also 0 since $P \triangle P \sim 0$.

However we cannot obtain $\neg P$ since applying \triangle to P and 0 gives a formula that is equivalent to one of these two:

1

$$P \triangle P \sim 0$$

$$P \triangle 0 \sim P$$

$$0 \triangle P \sim 0$$

$$0 \triangle 0 \sim 0$$

Suppose you know that F(P, Q, R, S) and G(P, Q, R, S) are two propositional formulas such that $F \wedge G$ has the same truth table as $F \vee G$. Prove that F and G have the same truth tables.

PROOF:

(First Proof): Using Fundamental Equivalences one has

Thus one has $F \sim G$, so they have the same truth tables.

<u>(Second Proof)</u>: This proof examines the truth tables. The value of $F \lor G$ at any row \vec{e} of the truth table is max($F(\vec{e}), G(\vec{e})$); and the value of $F \land G$ at any row \vec{e} of the truth table is min($F(\vec{e}), G(\vec{e})$). By assumption $F \lor G$ has the same truth table as $F \land G$, so, for every row \vec{e} ,

$$\max(\mathsf{F}(\vec{e}),\mathsf{G}(\vec{e})) = \min(\mathsf{F}(\vec{e}),\mathsf{G}(\vec{e})).$$

This can only happen if $F(\vec{e}) = G(\vec{e})$ holds for each row \vec{e} , that is, the truth tables are the same.

Give an **inductive definition** of Num(F), the number of occurrences of variables in a propositional formula F.

(Answer):

Num(P)	=	1
Num(0)	=	0
Num(1)	=	0
$Num(\neg F)$	=	Num(F)
$\mathit{Num}(F \lor G)$	=	$\mathit{Num}(F) + \mathit{Num}(G)$
$\mathit{Num}(F\wedgeG)$	=	$\mathit{Num}(F) + \mathit{Num}(G)$
$\mathit{Num}(F \to G)$	=	$\mathit{Num}(F) + \mathit{Num}(G)$
$\mathit{Num}(F \leftrightarrow G)$	=	$\mathit{Num}(F) + \mathit{Num}(G)$