Equivalent Formulas

In the following table you are asked to consider whether or not certain formulas are equivalent. The $\square \mathrm{s}$ in the left column are to be replaced by the appropriate binary connective in each of the successive columns. For example, consider the row starting with $P \square P \sim P$. Now go over to the column with the header \wedge. The question is whether or not $P \wedge P \sim P$. If the formulas are equivalent, put a check mark $(\sqrt{ })$ in the box. Otherwise leave the box empty.

	\vee	\wedge	\rightarrow	\leftrightarrow	\mid	\curlywedge
$P \square P \sim P$	$\sqrt{ }$	$\sqrt{ }$				
$P \square(P \square P) \sim(P \square P) \square P$	$\sqrt{ }$	$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
$P \square Q \sim Q \square P$	$\sqrt{ }$	$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
$P \square(Q \square P) \sim P$						
$P \square(Q \square R) \sim(P \square Q) \square R)$	$\sqrt{ }$	$\sqrt{ }$		$\sqrt{ }$		

Adequate Sets of Connectives

Circle (or highlight) the formulas among $0,1, P, \neg P$ that can be represented by a formula $F(P)$ using (only) the connectives in \mathcal{C} :

Given				
$\mathcal{C}=\{\vee\}$	0	1	$\boxed{\mathrm{P}}$	$\neg P$
$\mathcal{C}=\{\rightarrow\}$	0	1	$\boxed{\mathrm{P}}$	$\neg P$
$\mathcal{C}=\{\leftrightarrow, \rightarrow\}$	0	1	P	$\neg P$
$\mathcal{C}=\{\wedge, 1\}$	0	$\boxed{1}$	$\boxed{\mathrm{P}}$	$\neg P$

Circle (or highlight) the connectives that can be realized using the connectives in \mathcal{C} :

Given				
$\mathcal{C}=\{\rightarrow, \vee\}$	$\boxed{\vee}$	\wedge	$\overleftrightarrow{ }$	\leftrightarrow
$\mathcal{C}=\{\wedge, \leftrightarrow\}$	\vee	\wedge	\rightarrow	\leftrightarrow
$\mathcal{C}=\{\neg, \wedge\}$	\vee	\wedge	\rightarrow	\leftrightarrow
$\mathcal{C}=\{\rightarrow, \leftrightarrow\}$	\vee	\wedge	\leftrightarrow	\leftrightarrow

Substitution/Replacement

In each of the following inferences you are to choose the most inclusive answer for how the inference could be accomplished. The four choices are: substitution, replacement, both, neither.

1. $\frac{\neg \neg P \sim P}{\neg \neg \neg P \sim \neg P}$
2. $\frac{P \sim Q}{P \rightarrow P \sim Q \rightarrow Q}$
3. $\frac{P \wedge \neg Q \sim \neg(P \rightarrow Q)}{Q \wedge \neg P \sim \neg(Q \rightarrow P)}$
\qquad
Substitution
4. $\frac{P \vee Q \sim Q \vee P}{(P \vee Q) \rightarrow(P \vee Q) \sim(Q \vee P) \rightarrow(P \vee Q)}$ Substitution
\qquad
5. $\frac{P \rightarrow(Q \rightarrow P) \sim 1}{(Q \rightarrow P) \rightarrow(P \rightarrow(Q \rightarrow P)) \sim 1}$

Substitution

More on Adequate Connectives

Determine if the binary connective \triangle defined by $P \triangle Q \sim P \wedge \neg Q$ is adequate. Give Reasons! [Either show that some adequate set of connectives can be expressed using \triangle, or prove that some propositional formula cannot be expressed using \triangle.]

Consider the formulas $\mathrm{F}(P)$ that one can express using \triangle.
One certainly has P; and also 0 since $P \triangle P \sim 0$.
However we cannot obtain $\neg P$ since applying \triangle to P and 0 gives a formula that is equivalent to one of these two:

$$
\begin{aligned}
P \triangle P & \sim 0 \\
P \triangle 0 & \sim P \\
0 \triangle P & \sim 0 \\
0 \triangle 0 & \sim 0
\end{aligned}
$$

Suppose you know that $\mathrm{F}(P, Q, R, S)$ and $\mathrm{G}(P, Q, R, S)$ are two propositional formulas such that $\mathrm{F} \wedge \mathrm{G}$ has the same truth table as $\mathrm{F} \vee \mathrm{G}$. Prove that F and G have the same truth tables.
PROOF:
(First Proof): Using Fundamental Equivalences one has

$$
\begin{array}{rlrl}
F & \sim F \vee(F \wedge G) & G & \sim G \vee(G \wedge F) \\
& \sim F \vee(F \vee G) & & \sim G \vee(F \wedge G) \\
& \sim(F \vee F) \vee G & & \sim G \vee(F \vee G) \\
& \sim F \vee G & & \sim G \vee(G \vee F) \\
& & \sim G \vee G) \vee F \\
& & \sim G \vee F \\
& & & F \vee G
\end{array}
$$

Thus one has $\mathrm{F} \sim \mathrm{G}$, so they have the same truth tables.
(Second Proof): This proof examines the truth tables. The value of $\mathrm{F} \vee \mathrm{G}$ at any row \vec{e} of the truth table is $\max (\mathrm{F}(\vec{e}), \mathrm{G}(\vec{e}))$; and the value of $\mathrm{F} \wedge \mathrm{G}$ at any row \vec{e} of the truth table is $\min (\mathrm{F}(\vec{e}), \mathrm{G}(\vec{e}))$. By assumption $\mathrm{F} \vee \mathrm{G}$ has the same truth table as $\mathrm{F} \wedge \mathrm{G}$, so, for every row \vec{e},

$$
\max (\mathrm{F}(\vec{e}), \mathrm{G}(\vec{e}))=\min (\mathrm{F}(\vec{e}), \mathrm{G}(\vec{e}))
$$

This can only happen if $\mathrm{F}(\vec{e})=\mathrm{G}(\vec{e})$ holds for each row \vec{e}, that is, the truth tables are the same.

Give an inductive definition of $\operatorname{Num}(\mathrm{F})$, the number of occurrences of variables in a propositional formula F.
(Answer):

$$
\begin{aligned}
\operatorname{Num}(P) & =1 \\
\operatorname{Num}(0) & =0 \\
\operatorname{Num}(1) & =0 \\
\operatorname{Num}(\neg \mathrm{~F}) & =\operatorname{Num}(\mathrm{F}) \\
\operatorname{Num}(\mathrm{F} \vee \mathrm{G}) & =\operatorname{Num}(\mathrm{F})+\operatorname{Num}(\mathrm{G}) \\
\operatorname{Num}(\mathrm{F} \wedge \mathrm{G}) & =\operatorname{Num}(\mathrm{F})+\operatorname{Num}(\mathrm{G}) \\
\operatorname{Num}(\mathrm{F} \rightarrow \mathrm{G}) & =\operatorname{Num}(\mathrm{F})+\operatorname{Num}(\mathrm{G}) \\
\operatorname{Num}(\mathrm{F} \leftrightarrow \mathrm{G}) & =\operatorname{Num}(\mathrm{F})+\operatorname{Num}(\mathrm{G})
\end{aligned}
$$

