The Expansion Theorem

Prove that if a term $F(X)$ in the language of classes is always equal to $A X \cup B X^{\prime}$, where A and B are classes, then $A=F(1)$ and $B=F(0)$.
PROOF:

Letting $X=1$ gives

$$
F(1)=A 1 \cup B 1^{\prime}=A \cup 0=A,
$$

and then letting $X=0$ gives

$$
F(0)=A 0 \cup B 0^{\prime}=0 \cup B=B .
$$

For the formula $F(A, B)=A \cup A^{\prime} B$ carry out the following computations to calculate the expansion of $F(A, B)$ on A, B :

	Full Expression		Value
$F(1,1)=$	$1 \cup 1^{\prime} 1$	$=$	1
$F(1,0)=$	$1 \cup 1^{\prime} 0$	$=$	1
$F(0,1)=$	$0 \cup 0^{\prime} 1$	$=$	1
$F(0,0)=$	$0 \cup 0^{\prime} 0$	$=$	0

Thus expanding on A, B gives: $F(A, B)=\quad A B \cup A B^{\prime} \cup A^{\prime} B$

For the formula $F(A, B, C)=(A \cup B)^{\prime}(B \cup C)$ carry out the following computations to calculate the expansion of $F(A, B, C)$ on B :

	Full Expression		Simplified
$F(A, 1, C)=$	$(A \cup 1)^{\prime}(1 \cup C)$	$=$	0
$F(A, 0, C)=$	$(A \cup 0)^{\prime}(0 \cup C)$	$=$	$A^{\prime} C$

Expanding on B gives: $F(A, B, C)=\quad A^{\prime} C B^{\prime}$

For the formula $F(A, B, C)=(A \cup B)(B C)^{\prime}$ carry out the following computations to calculate the expansion of $F(A, B, C)$ on A, C :

	Full Expression		Simplified
$F(1, B, 1)=$	$(1 \cup B)(B 1)^{\prime}$	$=$	B^{\prime}
$F(1, B, 0)=$	$(1 \cup B)(B 0)^{\prime}$	$=$	1
$F(0, B, 1)=$	$(0 \cup B)(B 1)^{\prime}$	$=$	0
$F(0, B, 0)=$	$(0 \cup B)(B 0)^{\prime}$	$=$	B

Thus expanding on A, C gives: $F(A, B, C)=\quad B^{\prime} A C \cup A C^{\prime} \cup B A^{\prime} C^{\prime}$

Elimination

Given two classes A and B, prove that there is a class X such that $A X \cup B X^{\prime}=0$ holds if and only if $A B=0$, that is, iff the intersection of A and B is empty.
PROOF:
First let us suppose that $A X \cup B X^{\prime}=0$, for some X. Then one has

$$
\begin{aligned}
A X & =0 \\
B X^{\prime} & =0 .
\end{aligned}
$$

We can rewrite these equations as

$$
\begin{aligned}
& A \subseteq X^{\prime} \\
& B \subseteq X
\end{aligned}
$$

But then

$$
A \cap B \subseteq X^{\prime} \cap X=0
$$

so

$$
A \cap B=0
$$

This proves one direction.
Now let us suppose that $A B=0$ and show that there is an X such that $A X \cup B X^{\prime}=0$. This means we want $A X=0$ and $B X^{\prime}=0$, which can be expressed by saying that we want $A X=0$ and $B \subseteq X$. Clearly if we select $X=B$ then these conditions are satisfied.

For the formula $E(A, B, C)=(A \cup B \cup C)\left(A^{\prime} \cup B^{\prime} \cup C^{\prime}\right)$ carry out the following computations to eliminate B from the equation $E(A, B, C)=0$:

Full Expression	Simplified
$E(A, 1, C)=(A \cup 1 \cup C)\left(A^{\prime} \cup 1^{\prime} \cup C^{\prime}\right)=$	$A^{\prime} \cup C^{\prime}$
$E(A, 0, C)=(A \cup 0 \cup C)\left(A^{\prime} \cup 0^{\prime} \cup C^{\prime}\right)=$	$A \cup C$

Eliminating B gives (simplify first!): $\quad A C^{\prime} \cup A^{\prime} C=0$
For the formula $E(A, B, C, D)=(A \cup B)(C \cup D)$ carry out the following computations to eliminate A, D from the equation $E(A, B, C, D)=0$:

	Full Expression		Simplified
$E(1, B, C, 1)=$	$(1 \cup B)(C \cup 1)$	$=$	1
$E(1, B, C, 0)=$	$(1 \cup B)(C \cup 0)$	$=$	C
$E(0, B, C, 1)=$	$(0 \cup B)(C \cup 1)$	$=$	B
$E(0, B, C, 0)=$	$(0 \cup B)(C \cup 0)$	$=$	$B C$

Eliminating A, D gives (simplify first!):

$$
B C=0
$$

Fill in the following tree to give a proof of the validity of the argument using the method of Lewis Carroll. Be sure to give the number of the reason for each boxed letter.

