The Expansion Theorem

Prove that if a term F(X) in the language of classes is always equal to $AX \cup BX'$, where A and B are classes, then A = F(1) and B = F(0).
PROOF:

Letting X = 1 gives

$$F(1) = A1 \cup B1' = A \cup 0 = A,$$

and then letting X = 0 gives

$$F(0) = A0 \cup B0' = 0 \cup B = B.$$

For the formula $F(A, B) = A \cup A'B$ carry out the following computations to calculate the expansion of F(A, B) on A, B:

	Full Expression		Value
F(1,1) =	$1 \cup 1'1$	=	1
F(1,0) =	$1 \cup 1'0$	=	1
F(0,1) =	$0 \cup 0'1$	=	1
F(0,0) =	$0 \cup 0'0$	=	0

Thus expanding on A, B gives: $F(A, B) = AB \cup AB' \cup A'B$

For the formula $F(A, B, C) = (A \cup B)'(B \cup C)$ carry out the following computations to calculate the expansion of F(A, B, C) on B:

	Full Expression		Simplified
F(A, 1, C) =	$(A \cup 1)'(1 \cup C)$	=	0
F(A, 0, C) =	$(A \cup 0)'(0 \cup C)$	=	A'C

Expanding on B gives: F(A, B, C) = A'CB'

For the formula $F(A, B, C) = (A \cup B)(BC)'$ carry out the following computations to calculate the expansion of F(A, B, C) on A, C:

	Full Expression		Simplified
F(1, B, 1) =	$(1 \cup B)(B1)'$	=	B'
F(1, B, 0) =	$(1 \cup B)(B0)'$	=	1
F(0, B, 1) =	$(0 \cup B)(B1)'$	=	0
F(0, B, 0) =	$(0 \cup B)(B0)'$	=	B

Thus expanding on A, C gives: $F(A, B, C) = B'AC \cup AC' \cup BA'C'$

Elimination

Given two classes A and B, prove that there is a class X such that $AX \cup BX' = 0$ holds if and only if AB = 0, that is, iff the intersection of A and B is empty. PROOF:

First let us suppose that $AX \cup BX' = 0$, for some X. Then one has

$$AX = 0$$
$$BX' = 0.$$

We can rewrite these equations as

$$A \subseteq X'$$
$$B \subset X.$$

But then

$$A \cap B \subseteq X' \cap X = 0$$

SO

$$A \cap B = 0.$$

This proves one direction.

Now let us suppose that AB = 0 and show that there is an X such that $AX \cup BX' = 0$. This means we want AX = 0 and BX' = 0, which can be expressed by saying that we want AX = 0 and $B \subseteq X$. Clearly if we select X = B then these conditions are satisfied.

For the formula $E(A, B, C) = (A \cup B \cup C)(A' \cup B' \cup C')$ carry out the following computations to eliminate B from the equation E(A, B, C) = 0:

Full Expression	Simplified
$E(A,1,C) = (A \cup 1 \cup C)(A' \cup 1' \cup C') =$	$A' \cup C'$
$E(A, 0, C) = (A \cup 0 \cup C)(A' \cup 0' \cup C') =$	$A \cup C$

Eliminating B gives (simplify first!):

$$AC' \cup A'C = 0$$

For the formula $E(A, B, C, D) = (A \cup B)(C \cup D)$ carry out the following computations to eliminate A, D from the equation E(A, B, C, D) = 0:

	Full Expression		Simplified
E(1, B, C, 1) =	$(1 \cup B)(C \cup 1)$	=	1
E(1, B, C, 0) =	$(1 \cup B)(C \cup 0)$	=	C
E(0, B, C, 1) =	$(0 \cup B)(C \cup 1)$	=	B
E(0, B, C, 0) =	$(0 \cup B)(C \cup 0)$	=	BC

Eliminating A, D gives (simplify first!):

$$BC = 0$$

Fill in the following tree to give a proof of the validity of the argument using the method of Lewis Carroll. Be sure to give the number of the reason for each boxed letter.

$$1 CDE = 0$$

2 A B
$$C' = 0$$

3
$$D'EF'=0$$

$$4 \text{ AGE} = 0$$

$$\frac{5 \text{ BDF} = 0}{\text{BGE} = 0}$$

