Name: ID:

PMath 330 Assignment 8

Mark

The following output was generated by S.O.B.B:

$$
\begin{array}{lll}
14(x \cdot y)+(x \cdot z) & =x \cdot(y+z) \\
100(x \cdot y)+(z \cdot x) & =x \cdot(y+z) \\
127 x \cdot(y \cdot(z+x)) & =y \cdot x \\
628 x \cdot(y+(z \cdot(u+x))) & =x \cdot(y+z) \quad \text { [para_from 127.1.1, 14.1.1.2; demod } 100 \text {;flip.1] }
\end{array}
$$

Give the details of how S.O.B.B. found equation 628. (Follow the format in the supplementary page on Critical Pairs and Equational Theorem Proving.)

DETAILS:

Structures

Fill in the table for the following directed graph:

	a	b	c	d
a				
b				
c				
d				

Draw the directed graph for the following table:

	a	b	c	d
a	1	0	1	0
b	0	1	1	0
c	1	0	0	1
d	1	0	1	0

C

a

Herbrand Universe

Suppose that a first-order languge has only a constant symbol a, a binary function symbol f, and a binary relation symbol r.

List the elements of the second level S_{2} of the Herbrand universe:

$$
S_{2}=
$$

List all of the ground clauses that one can make from the symmetry clause $\{\neg r x y, r y x\}$ using just the portion of the Herbrand universe called S_{1}.

ANSWER:

Clauses

Let \mathbf{S} be the structure on $\{0,1,2\}$ with a unary operation defined by $f x=x+1(\bmod 3)$. The relation $<$ is the usual, that is, $0<1<2$. Given the literals

$$
\mathrm{L}_{1}=\neg(f x<y) \quad \mathrm{L}_{2}=x<f y
$$

determine all pairs (a, b) that satisfy the clause $C=\left\{\mathrm{L}_{1}, \mathrm{~L}_{2}\right\}$ in \mathbf{S} by filling in the following:

x	y	$f x$	$f y$	$f x<y$	$\neg(f x<y)$	$x<f y$	C
0	0						
0	1						
0	2						
1	0						
1	1						
1	2						
2	0						
2	1						
2	2						

Does \mathbf{S} satisfy the clause \mathbf{C} ?

Opp-unification: Suppose our first-order language has a unary relation symbol r and a binary operation symbol g. Show that the two clauses $\{r g x g y x, r g g y z w\}$ and $\{\neg r g x g g y z w\}$ are opp-unifiable, and find the most general opp-unifier $\left(\sigma_{1}, \sigma_{2}\right)$. [Change x, y, z, w in the second clause to X, Y, Z, W.]

Thus $\sigma_{1}=\left(\begin{array}{ll}x & \leftarrow \\ y & \leftarrow \\ z & \leftarrow \\ w & \leftarrow\end{array}\right.$
)

$$
\text { and } \quad \sigma_{2}=\left(\begin{array}{cc}
x & \leftarrow \\
y & \leftarrow \\
z & \leftarrow \\
w & \leftarrow
\end{array}\right.
$$

Resolution Theorem Proving

For f a unary function symbol and r a binary relation symbol fill in the reasons for the following resolution derivation:

$$
\begin{array}{ll}
\text { 1. } & \{r x f x\} \\
\text { 2. } & \{\neg r f 00\} \\
\text { 3. } & \{\neg r x y, r y x\} \\
\text { 4. } & \{r f x x\} \\
\text { 5. } & \}
\end{array}
$$

given
given
given

The following uses ground clauses from the given clauses $1-3$ of the previous problem. Identify the source of each ground clause (e.g., clause 3) that is a ground instance of one of the above given clauses, and give reasons (i.e., line numbers) for the resolution steps:

1. $\{r 0 f 0\}$
2. $\{\neg r 0 f 0, r f 00\}$
3. $\{\neg r f 00\}$
4. $\{\neg r 0 f 0\}$
5. $\}$
\qquad
