PMath 330 Assignment 8

Mark

The following output was generated by S.O.B.B:

 $\begin{array}{rcl} 14 & (x \cdot y) + (x \cdot z) & = & x \cdot (y + z) \\ 100 & (x \cdot y) + (z \cdot x) & = & x \cdot (y + z) \\ 127 & x \cdot (y \cdot (z + x)) & = & y \cdot x \\ 628 & x \cdot (y + (z \cdot (u + x))) & = & x \cdot (y + z) \end{array}$ [para_from 127.1.1, 14.1.1.2; demod 100 ;flip.1]

Give the details of how S.O.B.B. found equation 628. (Follow the format in the supplementary page on Critical Pairs and Equational Theorem Proving.)

DETAILS:

Structures

Fill in the table for the fol-					
lowing directed graph:					
		a	b	С	d
	a				
	b				
	c				1
d d	d				
			1		
					-

Draw the directed graph for the following table:

						а		b
	a	b	c	d				
a	1	0	1	0				
b	0	1	1	0				
c	1	0	0	1	0		-I	
d	1	0	1	0	C		a	
	b	$\begin{array}{c c} a & 1 \\ b & 0 \end{array}$	$\begin{array}{c cc} a & 1 & 0 \\ b & 0 & 1 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Herbrand Universe

Suppose that a first-order language has only a constant symbol a, a binary function symbol f, and a binary relation symbol r.

List the elements of the second level S_2 of the Herbrand universe:

$$S_2 =$$

List all of the ground clauses that one can make from the symmetry clause $\{\neg rxy, ryx\}$ using just the portion of the Herbrand universe called S_1 .

ANSWER:

Clauses

Let **S** be the structure on $\{0, 1, 2\}$ with a unary operation defined by $fx = x + 1 \pmod{3}$. The relation < is the usual, that is, 0 < 1 < 2. Given the literals

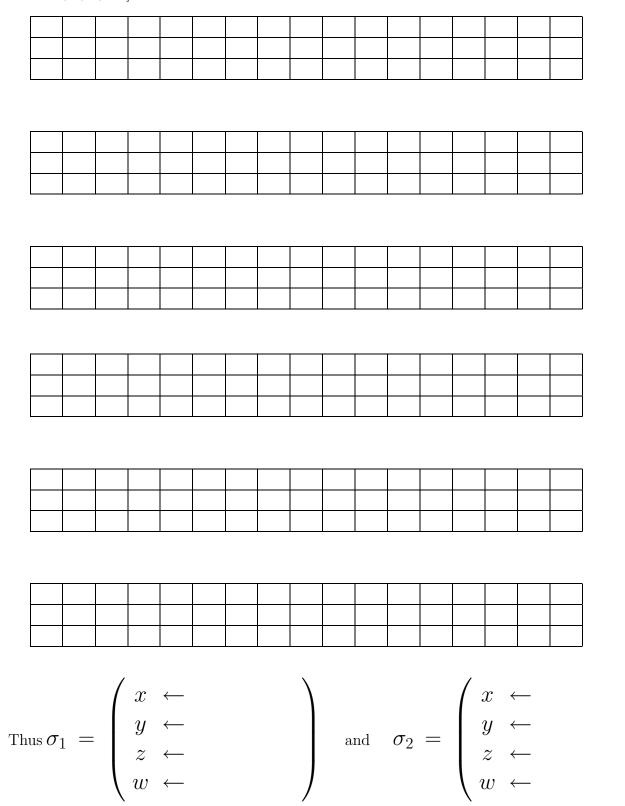
$$\mathsf{L}_1 \ = \ \neg \left(fx \ < \ y \right) \qquad \mathsf{L}_2 \ = \ x \ < \ fy$$

determine all pairs (a, b) that satisfy the clause $C = \{L_1, L_2\}$ in **S** by filling in the following:

x	y	fx	fy	fx < y	$\neg \left(fx < y \right)$	x < fy	С
0	0						
0	1						
0	2						
1	0						
1	1						
1	2						
2	0						
2	1						
2	2						

Does **S** satisfy the clause C?

Opp-unification: Suppose our first-order language has a unary relation symbol r and a binary operation symbol g. Show that the two clauses $\{rgxgyx, rggyzw\}$ and $\{\neg rgxggyzw\}$ are opp-unifiable, and find the most general opp-unifier (σ_1, σ_2) . [Change x, y, z, w in the second clause to X, Y, Z, W.]



Resolution Theorem Proving

For f a unary function symbol and r a binary relation symbol fill in the reasons for the following resolution derivation:

1. $\{rxfx\}$	given
2. $\{\neg rf00\}$	given
3. $\{\neg rxy, ryx\}$	given
4. $\{rfxx\}$	
5. $\{ \}$	

The following uses ground clauses from the given clauses 1–3 of the previous problem. Identify the source of each ground clause (e.g., clause 3) that is a ground instance of one of the above given clauses, and give reasons (i.e., line numbers) for the resolution steps:

1. $\{r0f0\}$	
2. $\{\neg r0f0, rf00\}$	
3. $\{\neg rf00\}$	
4. $\{\neg r0f0\}$	
5. { }	