Name: ID:

PMath 330 Assignment 7

Mark

Unification

In each of the following you are given a pair of terms that you are to test for being unifiable, and if they are unifiable, give the most general unifier.
(1) $(x \cdot(y+z))+(x+y)$ and $((u+v) \cdot w)+u$

(2) $(x \cdot(y+z))+z$ and $((u+v) \cdot v)+1$

For the Normal Form TRS given by

$$
\mathcal{R} \approx\{f f f x \longrightarrow f x\}
$$

find the normal forms for the following terms:

Term	Normal Form
$f x$	
$f f y$	
$f f f z$	-
$f f f f u$	-
$f f f f f v$	

For the Normal Form TRS given by

$$
\mathcal{R} \approx\{g f x \longrightarrow f g x, f f x \longrightarrow g x, g g g x \longrightarrow f x\}
$$

find the normal forms for the following terms:

Term	Normal Form
$g f g x$	
$g f f g y$	
gfgfgz	
ffggu	
fgfgfv	

For the Normal Form TRS given by

$$
\mathcal{R} \approx\{(x+y)+z \longrightarrow x+z\}
$$

find the normal forms for the following terms:

Term	Normal Form
$(x+x)+x$	
$(x+u)+(y+v)$	
$(x+(u+v))+(v+u)$	
$((x+w)+(x+u))+y$	
$(x+y)+((y+z)+(z+w))$	

Indicate why the TRS

$$
\mathcal{R} \approx\{x \cdot y \longrightarrow z+x\}
$$

is not terminating for the term $x \cdot y$ by filling in a few steps of
$x \cdot y \longrightarrow \mathcal{R}$ \qquad $\longrightarrow \mathcal{R}$ \qquad $\longrightarrow \mathcal{R}$

Indicate why the TRS

$$
\mathcal{R} \approx\{(x+y)+z \longrightarrow(z+x)+y\}
$$

is not terminating for the term $(x+y)+z$ by filling in a few steps of $(x+y)+z \longrightarrow_{\mathcal{R}} \longrightarrow \mathcal{R} \longrightarrow \mathcal{R}$

Indicate why the terminating TRS

$$
\mathcal{R} \approx\{x+f y \longrightarrow y+x, f x+y \longrightarrow x\}
$$

is not a normal form TRS by giving two different terminal forms:

Term	Terminal Form
$f x+f y$	
$f x+f y$	

Indicate why the terminating TRS

$$
\mathcal{R} \approx\{(x+y)+z \longrightarrow y+(x+z)\}
$$

is not a normal form TRS by giving two different terminal forms:

Term	Terminal Form
$((x+y)+z)+w$	
$((x+y)+z)+w$	

Given the pair of term rewrite rules (with disjoint variables)

$$
\underline{f g f x} \longrightarrow g f g x \quad \text { and } \quad g f \underline{f u} \longrightarrow f g u
$$

find the critical pair that results from unifying the underlined subterms:(Show Work)

Answer:

DETAILS:

Given the pair of term rewrite rules (with disjoint variables)

$$
\underline{(y+z)} \cdot x \longrightarrow(y \cdot x)+(z \cdot x) \quad \text { and } \quad \underline{(u+v)+w} \longrightarrow u+(v+w)
$$

find the critical pair that results from unifying the underlined subterms:(Show Work)

Answer:

DETAILS:

