Name: ID:

PMath 330

Assignment 6

Mark

Substitution/Replacement

In each of the following inferences you are to choose the answer that gives the most ways in which the inference can be accomplished. The four choices are: **substitution**, **replacement**, **both**, **neither**.

1.
$$\frac{x+x \approx 0}{(x+x)+(x+x) \approx 0}$$

$$2. \quad \frac{x + (y+z) \approx (x+y) + z}{(x+y) + z \approx x + (y+z)}$$

3.
$$\frac{x \cdot y \approx x \cdot z}{(y \cdot z) \cdot (x \cdot y) \approx (y \cdot z) \cdot (x \cdot z)}$$

$$4. \quad \frac{x \cdot y \approx y \cdot x}{y \cdot (x \cdot y) \approx y \cdot (y \cdot x)}$$

5.
$$\frac{x+y \approx u+v}{y+(x+y) \approx y+(u+v)}$$

Find a two element **counterexample** to the following equational argument:

$$\frac{x \cdot y \approx u \cdot v}{x \cdot (y+z) \approx (x \cdot y) + (x \cdot z)} \qquad \frac{\begin{array}{c|ccc} + a & b \\ \hline a \\ \hline b \\ \hline \end{array}} \qquad \frac{\begin{array}{c|cccc} \cdot a & b \\ \hline a \\ \hline b \\ \hline \end{array}$$

Find a two element **counterexample** to the following argument:

$$\frac{fg(x) \approx gf(x)}{f(x) \approx g(x)} \qquad \frac{\begin{array}{c|c} f & & g \\ \hline a & & a \\ \hline b & & b \end{array}$$

Give a derivation using Birkhoff's Rules, stating reasons for your steps, to show that

$$x \cdot y \approx u \cdot v \vdash (x \cdot x) + (y \cdot y) \approx (y \cdot y) + (x \cdot x).$$

The following is a derivation:

1. $x \cdot y \approx u \cdot v$	Given

Fill in the reasons for the steps in the following derivation. [This is part of a derivation found by an automated theorem prover.]

1.	x + 0	\approx	x	given
2.	x + (-x)	\approx	0	given
3.	x + y	\approx	y + x	given
4.	(x+y)+z	\approx	x + (y + z)	given
5.	$x \cdot (y+z)$	\approx	$(x \cdot y) + (x \cdot z)$	given
6.	$(x+y)\cdot z$	\approx	$(x \cdot z) + (y \cdot z)$	given
7.	$x \cdot x$	\approx	x	given
8.	$(x \cdot y) + (x \cdot z)$	\approx	$x \cdot (y+z)$	
9.	$(x \cdot z) + (y \cdot z)$	\approx	$(x+y)\cdot z$	
10.	(-x) + x	\approx	x + (-x)	3 Subs
11.	(-x) + x	\approx	0	10, 2 Trans
12.	(x + (-x)) + y	\approx	x + ((-x) + y)	
13.	x + ((-x) + y)	\approx	(x + (-x)) + y	
14.	(x + (-x)) + y	\approx	0+y	
15.	0+y	\approx	y + 0	
16.	y + 0	\approx	y	
17.	0+y	\approx	y	
18.	(x + (-x)) + y	\approx	y	
19.	x + ((-x) + y)	\approx	y	
20.	((-x) + x) + y	\approx	(x + (-x)) + y	
21.	((-x) + x) + y	\approx	y	
22.	((-x) + x) + y	\approx	(-x) + (x+y)	
23.	(-x) + (x+y)	\approx	((-x) + x) + y	
24.	(-x) + (x+y)	\approx	y	
25.	y + x	\approx	x + y	
26.	(-x) + (y+x)	\approx	(-x) + (x+y)	
27.	(-x) + (y+x)	\approx	y	
28.	$(x \cdot x) + (x \cdot y)$	\approx	$x \cdot (x+y)$	
29.	$(x \cdot x) + (x \cdot y)$	\approx	$x + (x \cdot y)$	