Name:	ID:	

PMath 330

Assignment 5

Mark

A RESOLUTION DERIVATION

Given the collection of 8 clauses

1. $\{Q, S\}$ 2. $\{R, S\}$ 3. $\{\neg P, Q\}$ 4. $\{P, R\}$

5. $\{P, \neg Q\}$ 6. $\{\neg P, \neg R\}$ 7. $\{\neg Q, \neg S\}$ 8. $\{\neg R, \neg S\}$

fill in the reasons for the following resolution derivation:

9. $\{Q, \neg R\}$

13. $\{Q\}$

10. $\{\neg Q, R\}$

14. $\{\neg Q\}$

11. $\{Q, R\}$

12. $\{\neg Q, \neg R\}$

15. { }

Is it possible to find an assignment of truth values for the propositional variables P, Q, R, Sthat will satisfy the original eight clauses? (if yes, give one)

Given the collection S of 6 clauses

1. $\{P, \neg Q\}$ 2. $\{Q, S\}$ 3. $\{P, R\}$

4. $\{\neg P, \neg R\}$ 5. $\{\neg Q, \neg S\}$ 6. $\{\neg R, \neg S\}$

fill in the reasons for the following resolution steps:

7. $\{Q, \neg R\}$

14. $\{P, S\}$

8. $\{P, \neg S\}$

15. $\{P, \neg R\}$

 $9. \quad \{S, \neg S\}$

16. $\{P\}$

10. $\{Q, \neg Q\}$

17. $\{\neg R, S\}$

11. $\{\neg Q, \neg R\}$

12. $\{P, \neg P\}$

18. $\{P, Q\}$

13. $\{R, \neg R\}$

19. $\{\neg R\}$

Can you obtain any other clauses by resolution?

What does this say about the satisfiability of S?

Apply the Davis-Putnam Procedure to the First Problem, showing just the S_i and U_i steps (as done for the resolution on R below).

Resolution on R:

Resolution on P:

 ${\mathcal S_4}'$:

 \mathcal{U}_4 :

$\mathcal{S}_2{}'$:		
\mathcal{U}_2 :		
Resolution on Q :		
\mathcal{S}_3' :		
\mathcal{U}_3 :		
Resolution on S :		

Given the collection of five Horn clauses

1.
$$\{\neg P, Q\}$$
 2. $\{P\}$ 3. $\{\neg R\}$ 4. $\{S, \neg Q\}$ 5. $\{\neg S, R\}$

find all clauses that can be derived using unit resolution:

	Clause	Reason
6.		
7.		
8.		
9.		
10.		
11.		
12.		

Given the clauses $\{\neg P, Q, R\}$ and $\{\neg Q, R, S\}$ prove, using just the definitions, that if \vec{e} is a truth evaluation of P, Q, R, S that makes the two clauses true then it also makes the clause $\{\neg P, R, S\}$, obtained by resolving the two over Q, true.

Consider the propositional argument:

$$\mathsf{F}_1:\ (P \to \neg\, Q) \to R$$

$$\frac{\mathsf{F}_2:\ P\vee\neg(Q\to R)}{\mathsf{F}:\ P\leftrightarrow(Q\leftrightarrow R)}$$

$$F: P \leftrightarrow (Q \leftrightarrow R)$$

Give the conjunctive normal form for each of the following formulas:

F₁: _____

F₂: _____

From this derive a set S of clauses such that F_1, F_2 \therefore F is valid iff $\neg \mathsf{Sat}(S)$. S has the clauses:

- 4. _____
- 2. <u>_____</u> 5. ____
- 3. ______ 6. ____

Is S satisfiable? (Reasons)

Is the original argument valid? (Reasons)