Name: ID:

PMath 330 Assignment 5

Mark

A Resolution Derivation

Given the collection of 8 clauses

1. $\{Q, S\}$
2. $\{R, S\}$
3. $\{\neg P, Q\}$
4. $\{P, R\}$
5. $\{P, \neg Q\}$
6. $\{\neg P, \neg R\}$
7. $\{\neg Q, \neg S\}$
8. $\{\neg R, \neg S\}$
fill in the reasons for the following resolution derivation:

Is it possible to find an assignment of truth values for the propositional variables P, Q, R, S that will satisfy the original eight clauses? (if yes, give one)

Given the collection \mathcal{S} of 6 clauses

1. $\{P, \neg Q\}$
2. $\{Q, S\}$
3. $\{P, R\}$
4. $\{\neg P, \neg R\}$
5. $\{\neg Q, \neg S\}$
6. $\{\neg R, \neg S\}$
fill in the reasons for the following resolution steps:

7. $\{Q, \neg R\}$	14. $\{P, S\}$
8. $\{P, \neg S\}$	15. $\{P, \neg R\}$
9. $\{S, \neg S\}$	16. $\{P\}$
10. $\{Q, \neg Q\}$	17. $\{\neg R, S\}$
11. $\{\neg Q, \neg R\}$	18. $\{P, Q\}$
12. $\{P, \neg P\}$	19. $\{\neg R\}$
13. $\{R, \neg R\}$	

Can you obtain any other clauses by resolution?
What does this say about the satisfiability of \mathcal{S} ?
\qquad

Apply the Davis-Putnam Procedure to the First Problem, showing just the $\mathcal{S}_{i}{ }^{\prime}$ and \mathcal{U}_{i} steps (as done for the resolution on R below).

Resolution on R :

(1)
(2)
(3)
(4)
$\mathcal{S}_{1}{ }^{\prime}:\{Q, S\} \quad\{R, S\} \quad\{\neg P, Q\} \quad\{P, R\} \quad\{P, \neg Q\} \quad\{\neg P, \neg R\} \quad\{\neg Q, \neg S\} \quad\{\neg R, \neg S\}$
$(1,3) \quad(1,4) \quad(2,3) \quad(2,4)$
$\mathcal{U}_{1}: \quad\{\neg P, S\} \quad\{S, \neg S\} \quad\{P, \neg P\} \quad\{P, \neg S\}$
Resolution on P :
$\mathcal{S}_{2}{ }^{\prime}:$
\mathcal{U}_{2} :

Resolution on Q :

$\mathcal{S}_{3}{ }^{\prime}:$
$\mathcal{U}_{3}:$

Resolution on S :

$\mathcal{S}_{4}{ }^{\prime}:$
$\mathcal{U}_{4}:$

Given the collection of five Horn clauses

1. $\{\neg P, Q\}$
2. $\{P\}$
3. $\{\neg R\}$
4. $\{S, \neg Q\}$
5. $\{\neg S, R\}$
find all clauses that can be derived using unit resolution:

Given the clauses $\{\neg P, Q, R\}$ and $\{\neg Q, R, S\}$ prove, using just the definitions, that if \vec{e} is a truth evaluation of P, Q, R, S that makes the two clauses true then it also makes the clause $\{\neg P, R, S\}$, obtained by resolving the two over Q, true.

Consider the propositional argument:

$$
\begin{array}{ll}
\mathrm{F}_{1}: & (P \rightarrow \neg Q) \rightarrow R \\
\mathrm{~F}_{2}: & P \vee \neg(Q \rightarrow R) \\
\mathrm{F}: & P \leftrightarrow(Q \leftrightarrow R)
\end{array}
$$

Give the conjunctive normal form for each of the following formulas:
F_{1} : \qquad
F_{2} : \qquad
$\neg F$: \qquad
From this derive a set \mathcal{S} of clauses such that $\mathrm{F}_{1}, \mathrm{~F}_{2} \therefore \mathrm{~F}$ is valid iff $\neg \operatorname{Sat}(\mathcal{S}) . \mathcal{S}$ has the clauses:

1. \qquad 4. \qquad
2. \qquad 5. \qquad
3. \qquad 6. \qquad
Is \mathcal{S} satisfiable? (Reasons)

Is the original argument valid? (Reasons)

