PMath 330 Assignment 3

Mark

Equivalent Formulas

In the following table you are asked to consider whether or not certain formulas are equivalent. The \Box s in the left column are to be replaced by the appropriate binary connective in each of the successive columns. For example, consider the row starting with $P \Box P \sim P$. Now go over to the column with the header \wedge . The question is whether or not $P \wedge P \sim P$. If the formulas are equivalent, put a check mark ($\sqrt{}$) in the box. Otherwise leave the box empty.

	\vee	\wedge	\rightarrow	\leftrightarrow	人
$P \Box P \sim P$					
$P \square (P \square P) \sim (P \square P) \square P$					
$P \Box Q \sim Q \Box P$					
$P \square (Q \square P) \sim P$					
$P \Box (Q \Box R) \sim (P \Box Q) \Box R)$					

Adequate Sets of Connectives

Circle (or highlight) the formulas among $0, 1, P, \neg P$ that can be represented by a formula F(P) using (only) the connectives in C:

Given				
$\mathcal{C} = \{\lor\}$	0	1	P	$\neg P$
$\mathcal{C} = \{ ightarrow \}$	0	1	P	$\neg P$
$\mathcal{C} = \{\leftrightarrow, \rightarrow\}$	0	1	P	$\neg P$
$\mathcal{C} = \{\wedge, 1\}$	0	1	P	$\neg P$

Circle (or highlight) the connectives that can be realized using the connectives in C:

Given				
$\mathcal{C} = \{ \rightarrow, \lor \}$	\vee	\wedge	\rightarrow	\leftrightarrow
$\mathcal{C} = \{\wedge, \leftrightarrow\}$	\vee	\wedge	\rightarrow	\leftrightarrow
$\mathcal{C} = \{ \neg, \wedge \}$	\vee	\wedge	\rightarrow	\leftrightarrow
$\mathcal{C} = \{ \rightarrow, \leftrightarrow \}$	\vee	\wedge	\rightarrow	\leftrightarrow

Substitution/Replacement

In each of the following inferences you are to choose the most inclusive answer for how the inference could be accomplished. The four choices are: **substitution**, **replacement**, **both**, **neither**.

1.	$\neg \neg P \sim P$	
	$\neg \neg \neg P \sim \neg P$	
2.	$P \sim Q$	
	$P \rightarrow P ~\sim~ Q \rightarrow Q$	
3.	$P \land \neg Q \sim \neg (P \to Q)$	
	$Q \wedge \neg P ~\sim~ \neg (Q \to P)$	
4.	$P \lor Q \sim Q \lor P$	
	$\hline (P \lor Q) \to (P \lor Q) \sim (Q \lor P) \to (P \lor Q)$	
5.	$P \rightarrow (Q \rightarrow P) \sim 1$	
	$(Q \to P) \to (P \to (Q \to P)) \sim 1$	

More on Adequate Connectives

Determine if the binary connective \triangle defined by $P \triangle Q \sim P \land \neg Q$ is adequate. Give Reasons! [Either show that some adequate set of connectives can be expressed using \triangle , or prove that some propositional formula cannot be expressed using \triangle .]

Suppose you know that F(P, Q, R, S) and G(P, Q, R, S) are two propositional formulas such that $F \wedge G$ has the same truth table as $F \vee G$. Prove that F and G have the same truth tables. PROOF:

Give an **inductive definition** of $Num(\mathsf{F})$, the number of occurrences of variables in a propositional formula F .