PMath 330
 Assignment 3

Mark

Equivalent Formulas

In the following table you are asked to consider whether or not certain formulas are equivalent. The $\square \mathrm{s}$ in the left column are to be replaced by the appropriate binary connective in each of the successive columns. For example, consider the row starting with $P \square P \sim P$. Now go over to the column with the header \wedge. The question is whether or not $P \wedge P \sim P$. If the formulas are equivalent, put a check mark $(\sqrt{ })$ in the box. Otherwise leave the box empty.

	\vee	\wedge	\rightarrow	\leftrightarrow	\mid	\curlywedge
$P \square P \sim P$						
$P \square(P \square P) \sim(P \square P) \square P$						
$P \square Q \sim Q \square P$						
$P \square(Q \square P) \sim P$						
$P \square(Q \square R) \sim(P \square Q) \square R)$						

Adequate Sets of Connectives

Circle (or highlight) the formulas among $0,1, P, \neg P$ that can be represented by a formula $F(P)$ using (only) the connectives in \mathcal{C} :

Given				
$\mathcal{C}=\{\vee\}$	0	1	P	$\neg P$
$\mathcal{C}=\{\rightarrow\}$	0	1	P	$\neg P$
$\mathcal{C}=\{\leftrightarrow, \rightarrow\}$	0	1	P	$\neg P$
$\mathcal{C}=\{\wedge, 1\}$	0	1	P	$\neg P$

Circle (or highlight) the connectives that can be realized using the connectives in \mathcal{C} :

Given				
$\mathcal{C}=\{\rightarrow, \vee\}$	\vee	\wedge	\rightarrow	\leftrightarrow
$\mathcal{C}=\{\wedge, \leftrightarrow\}$	\vee	\wedge	\rightarrow	\leftrightarrow
$\mathcal{C}=\{\neg, \wedge\}$	\vee	\wedge	\rightarrow	\leftrightarrow
$\mathcal{C}=\{\rightarrow, \leftrightarrow\}$	\vee	\wedge	\rightarrow	\leftrightarrow

Substitution/Replacement

In each of the following inferences you are to choose the most inclusive answer for how the inference could be accomplished. The four choices are: substitution, replacement, both, neither.

1. $\quad \begin{aligned} \neg \neg P & \sim P \\ \neg \neg \neg P & \sim \neg P\end{aligned}$
2. $\frac{P \sim Q}{P \rightarrow P \sim Q \rightarrow Q}$
3. $\frac{P \wedge \neg Q \sim \neg(P \rightarrow Q)}{Q \wedge \neg P \sim \neg(Q \rightarrow P)}$
4. $\frac{P \vee Q \sim Q \vee P}{(P \vee Q) \rightarrow(P \vee Q) \sim(Q \vee P) \rightarrow(P \vee Q)}$
5. $\frac{P \rightarrow(Q \rightarrow P) \sim 1}{(Q \rightarrow P) \rightarrow(P \rightarrow(Q \rightarrow P)) \sim 1}$

More on Adequate Connectives

Determine if the binary connective \triangle defined by $P \triangle Q \sim P \wedge \neg Q$ is adequate. Give Reasons! [Either show that some adequate set of connectives can be expressed using \triangle, or prove that some propositional formula cannot be expressed using \triangle.]

Suppose you know that $\mathrm{F}(P, Q, R, S)$ and $\mathrm{G}(P, Q, R, S)$ are two propositional formulas such that $\mathrm{F} \wedge \mathrm{G}$ has the same truth table as $\mathrm{F} \vee \mathrm{G}$. Prove that F and G have the same truth tables. PROOF:

Give an inductive definition of $\operatorname{Num}(\mathrm{F})$, the number of occurrences of variables in a propositional formula F.

