Name:

PMath 330 Assignment 2

Mark

The Expansion Theorem

Prove that if a term $F(X)$ in the language of classes is always equal to $A X \cup B X^{\prime}$, where A and B are classes, then $A=F(1)$ and $B=F(0)$.
PROOF:

For the formula $F(A, B)=A \cup A^{\prime} B$ carry out the following computations to calculate the expansion of $F(A, B)$ on A, B :

Full Expression Value

$F(1,1)=$	$=$
$F(1,0)=$	$=$
$F(0,1)=$	$=$
$F(0,0)=$	$=$

Thus expanding on A, B gives: $F(A, B)=$

For the formula $F(A, B, C)=(A \cup B)^{\prime}(B \cup C)$ carry out the following computations to calculate the expansion of $F(A, B, C)$ on B :

	Full Expression	
$F(A, 1, C)=$		Simplified
$F(A, 0, C)=$		$=$

Expanding on B gives: $F(A, B, C)=$

For the formula $F(A, B, C)=(A \cup B)(B C)^{\prime}$ carry out the following computations to calculate the expansion of $F(A, B, C)$ on A, C :

	Full Expression	
$F(1, B, 1)=$	$=$	Simplified
$F(1, B, 0)=$	$=$	
$F(0, B, 1)=$	$=$	
$F(0, B, 0)=$	$=$	

Thus expanding on A, C gives: $F(A, B, C)=$

Elimination

Given two classes A and B, prove that there is a class X such that $A X \cup B X^{\prime}=0$ holds if and only if $A B=0$, that is, iff the intersection of A and B is empty.
PROOF:

For the formula $E(A, B, C)=(A \cup B \cup C)\left(A^{\prime} \cup B^{\prime} \cup C^{\prime}\right)$ carry out the following computations to eliminate B from the equation $E(A, B, C)=0$:

$$
\text { Full Expression } \quad \text { Simplified }
$$

$E(A, 1, C)=$	$=$
$E(A, 0, C)=$	$=$

Eliminating B gives (simplify first!): $\quad=0$
For the formula $E(A, B, C, D)=(A \cup B)(C \cup D)$ carry out the following computations to eliminate A, D from the equation $E(A, B, C, D)=0$:

Full Expression Simplified

$E(1, B, C, 1)=$	$=$
$E(1, B, C, 0)=$	$=$
$E(0, B, C, 1)=$	$=$
$E(0, B, C, 0)=$	$=$

Eliminating A, D gives (simplify first!):
$=0$

Fill in the following tree to give a proof of the validity of the argument using the method of Lewis Carroll. Be sure to give the number of the reason for each boxed letter.

$B^{\prime} G E$

