PMath 330 Assignment 2

Mark

The Expansion Theorem

Prove that if a term F(X) in the language of classes is always equal to $AX \cup BX'$, where A and B are classes, then A = F(1) and B = F(0). PROOF:

For the formula $F(A, B) = A \cup A'B$ carry out the following computations to calculate the expansion of F(A, B) on A, B:

	Full Expression	Value
F(1,1) =		=
F(1,0) =		=
F(0,1) =		=
F(0,0) =		=

Thus expanding on A, B gives: F(A, B) =

For the formula $F(A, B, C) = (A \cup B)'(B \cup C)$ carry out the following computations to calculate the expansion of F(A, B, C) on B:

	Full Expression	Simplified
F(A, 1, C) =		=
F(A, 0, C) =		=

Expanding on B gives: F(A, B, C) =

For the formula $F(A, B, C) = (A \cup B)(BC)'$ carry out the following computations to calculate the expansion of F(A, B, C) on A, C:

	Full Expression	Simplified
F(1, B, 1) =	=	=
F(1, B, 0) =	=	=
F(0, B, 1) =	=	=
F(0, B, 0) =	=	=

Thus expanding on A, C gives: F(A, B, C) =

Elimination

Given two classes A and B, prove that there is a class X such that $AX \cup BX' = 0$ holds if and only if AB = 0, that is, iff the intersection of A and B is empty. PROOF: For the formula $E(A, B, C) = (A \cup B \cup C)(A' \cup B' \cup C')$ carry out the following computations to eliminate B from the equation E(A, B, C) = 0:

page 3/3

Fu	Ill Expression Simplified
E(A, 1, C) =	=
E(A, 0, C) =	=
Eliminating B gives (simplify first!):	= 0

For the formula $E(A, B, C, D) = (A \cup B)(C \cup D)$ carry out the following computations to eliminate A, D from the equation E(A, B, C, D) = 0:

Full	Expression Simplified
E(1, B, C, 1) =	=
E(1, B, C, 0) =	=
E(0, B, C, 1) =	=
E(0, B, C, 0) =	=
Eliminating A, D gives (simplify first!):	= 0

Fill in the following tree to give a proof of the validity of the argument using the method of Lewis Carroll. Be sure to give the number of the reason for each boxed letter.

B´G E

