Contents

Preface xi

Overview xiii

Notation Guide xix

Part 1. Additive Number Systems 1

Chapter 1. Background from Analysis 3
 1.1. Series and infinite products 4
 1.2. Power series expansions 9
 1.3. Big O, little o, and \sim notation 12
 1.4. The radius of convergence and RT_ρ 13
 1.5. Growth rate of coefficients 15

Chapter 2. Counting Functions and Fundamental Identities 17
 2.1. Defining additive number systems 17
 2.2. Examples of additive number systems 21
 2.3. Counting functions, fundamental identities 25
 2.4. Global counts 33
 2.5. Alternate version of the fundamental identity 34
 2.6. Reduced additive number systems 37
 2.7. Finitely generated number systems 39
 2.8. $a^*(n)$ is eventually positive 43

Chapter 3. Density and Partition Sets 45
 3.1. Asymptotic density 45
 3.2. Dirichlet density 48
 3.3. The standard assumption 51
 3.4. The set of additives of an element 51
 3.5. Partition sets 54
 3.6. Generating series of partition sets 57
 3.7. Partition sets have Dirichlet density 58
 3.8. Schur’s Tauberian Theorem 62
 3.9. Simple partition sets 67
 3.10. The asymptotic density of γP 68
 3.11. Adding an indecomposable 70
Chapter 4. The Case $\rho = 1$
 4.1. The fundamental results when $\rho = 1$
 4.2. The Bateman and Erdős Result
 4.3. Stewart’s Sum Theorem
 4.4. $\rho = 1$ does not imply RT_1
 4.5. Further results on RT_1

Chapter 5. The Case $0 < \rho < 1$
 5.1. Compton’s Tauberian Theorem
 5.2. When is $\delta(B) = 0$?
 5.3. The density of \overline{B}
 5.4. Compton’s Density Theorem
 5.5. The Knopfmacher, Knopfmacher, Warlimont asymptotics

Chapter 6. Monadic Second-Order Limit Laws
 6.1. First-order logic
 6.2. Monadic second-order logic
 6.3. Asymptotic density of subsets of \mathcal{K}
 6.4. Quantifier rank and equivalent formulas
 6.5. Ehrenfeucht-Fraissé games
 6.6. Adequate classes of structures

Part 2. Multiplicative Number Systems

Chapter 7. Background from Analysis
 7.1. Series and infinite products
 7.2. Dirichlet series expansions
 7.3. The abscissa of convergence and RV_α
 7.4. Growth rate of coefficients

Chapter 8. Counting Functions and Fundamental Identities
 8.1. Defining multiplicative number systems
 8.2. Examples of multiplicative number systems
 8.3. Counting functions, fundamental identities
 8.4. Alternate version of the fundamental identity
 8.5. Finitely generated multiplicative number systems

Chapter 9. Density and Partition Sets
 9.1. Asymptotic density
 9.2. Dirichlet density
 9.3. The standard assumption
 9.4. The set of multiples of an element
 9.5. Partition sets
 9.6. Generating series of partition sets
 9.7. Partition sets have Dirichlet density
 9.8. Discrete multiplicative number systems
 9.9. When sets bA have global asymptotic density
CONTENTS

9.10. The strictly multiplicative case and RV_α 181
9.11. The discrete case and RV_α 181
9.12. Analog of Schur’s Tauberian Theorem 182
9.13. Simple partition sets 188
9.14. The asymptotic density of P^γ 189
9.15. Adding an indecomposable 191
9.16. First conjecture 194

Chapter 10. The Case $\alpha = 0$ 195
10.1. The fundamental results when $\alpha = 0$ 195
10.2. Odlyzko’s Product Theorem 196
10.3. Further results on RV_0 198
10.4. Second conjecture 199

Chapter 11. The Case $0 < \alpha < \infty$ 201
11.1. Analog of Compton’s Tauberian Theorem 201
11.2. When is $\Delta(B) = 0$? 204
11.3. The density of \overline{B} 205
11.4. Sárközy’s Density Theorem 206
11.5. Generalizing Oppenheim’s asymptotics 208
11.6. Third conjecture 216

Chapter 12. First-Order Limit Laws 217
12.1. Asymptotic density of subsets of \mathcal{K} 217
12.2. The Feferman-Vaught Theorem 218
12.3. Skolem’s analysis of the first-order calculus of classes 223
12.4. \mathcal{K}_φ is a disjoint union of partition classes 226
12.5. Applications 227
12.6. Finite dimensional structures 231
12.7. The main problem 231

Appendix A. Formal Power Series 233
Real functions 233
Polynomials 236
Power series 240
An identity for number systems 244
Division of power series 245
The composition inverse of a power series 246
A group under composition 247

Appendix B. Refined Counting 251
The additive case 251
The multiplicative case 256

Appendix C. Consequences of $\delta(P) = 0$ 261
Bell’s Positive Radius Theorem: $\delta(P) = 0$ implies $\rho > 0$ 261
Showing $A(\rho) = \infty$ 265
Appendix D. On the Monotonicity of $a(n)$ When $p(n) \leq 1$ 269

Appendix E. Results of Woods 273
 Woods’ Tauberian Theorem 273
 Woods’ Density Theorem 277

Bibliography 281

Symbol Index 285

Subject Index 287