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Introduction

Unstable flow down an incline

Unstable
uniform flow

0 \\

@ Critical conditions for the onset of Instability.
@ Structure of Roll Waves
@ Investigate the effect of bottom topography

Roll waves
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Introduction

The spillway from the Llyn
Brianne Dam in Wales
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Introduction

) WWWW Experiment taken

from Balmforth
‘ : : : —— and Mandre

DAY M. 2004)
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Introduction

Previous studies

Flow down an inclined plane has received numerous studies:

@ pioneering experiments by Kapitza & Kapitza, 1949,
further experiments by Liu et al. (Phys. Fluids, 1995)

@ first analytical studies predicting onset of instability can be
traced back to Benjamin (JFM, 1957),
Yih (Phys. Fluids, 1963) and Benney (J Math. Phys., 1966)

@ numerical investigation by Ramaswamy et al. (JFM, 1996)

@ sinusoidal bottom topography was carried out by Balmforth
& Mandre (JFM, 2004)

@ effects of weak surface tension was considered by
Wierschem et al. (Acta Mech., 2005) S
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Mathematical Formulation

Equations of motion

ou ow

ax "oz 0
@+u%+w@ ——@Jr sind + @Jr@
P\at Y% " Waz) T Tax T 9P Floxz ™ oz
10p ,uﬁzw_
;8z+gcose—pazz_0

If Re ~ O(1), then above equations represent a second-order
approximation to the Navier-Stokes equations with respect to
shallowness parameter 6 = H/L
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Mathematical Formulation

Interface conditions

Free surface conditions:

ow 82h

v 1
az aﬂaf)‘:_af‘;" at z=¢(x)+ h(x, 1)
oh " oh

a + Uaf + UC ( )
Bottom boundary conditions:
u+(x)w=0 and ¢'(x)u—w=0 at z=((x)

=u=w=0 at z=((x)
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Mathematical Formulation

Weighted residual method (Ruyer-Quil et al., 2002)

First eliminate pressure using

ou ou T8221

p =cosb pg(z1 — z) — p Ix - —po — T oz

Zq :h-f-c

Next, multiply momentum equation by weight function

W(x, z, t) = 2[h(x, t) + ¢(x)]z — 22 — [2h(x, t) + ¢(X)]¢(X)

¢+h
Depth-integrate and introduce: h(x,t), q(x,t) = / udz
¢

To convert terms like: Wuldz , ==
¢ po
q Waterloo

assume the parabolic velocity profile: u(x, z, t) = o8 w
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Mathematical Formulation

Dimensionless equations

In terms of h, g the dimensionless equations become

oh g
at Tax =Y
oq o [q? g 9q 5coth @_g
8t+78x<h> 7hox T2 Re \ TN Moy i
5 W

ah 1 [98%q 9 9qoh
+= ¢ >
6 cot?9 \ Ox3 Recotd |20x2 2hox dx

4q (0h\? 6q82h 5¢'qoh 15¢"q 5(¢)%q
_1_7 - - e — —
h2 \ ox

h ox2  2h? dx 4h h?

where We = RS , Re = rQ and ¢(x) = apcos(kpx) Wiiéioo
o

pQ?

By: Serge D’Alessio With: J.P. Pascal Interfacial Instability



Numerical Solution Procedure

Begin by expressing equations in the form
oh 0q
ot T ox

oq 9 (9¢*> 5coth o\
éﬂ+m<7h+4%h =YX

where W =W(h,q)
2h 9249 93
and X=X<Xh 8h8q6h8q8h)

0
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Numerical Solution Procedure

Fractional-step method (LeVeque, 2002)

Decouple the advective and diffusive components, first solve

oh oq
ot Tox Y

9q 9 (9q®  5cotd o\

at " ox <7h+ 2re T ) = V(MA)
over a time step At, and then solve

0q oh 0q 9°h 9%q 0%h

at X ax’ dx’ Ox2’ 9x2’ Ox3

using the solution obtained from the first step as an initial
condition for the second step; the second step returns the Wat@l
solution for g at the new time t + At
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Numerical Solution Procedure

First step

This involves solving a nonlinear system of hyperbolic
conservation laws; express in vector form

oU  OF(U)
EJF ox = b(U)

|

€ o

|

Utilize MacCormack’s method to solve this system; this is a
conservative second-order accurate finite difference scheme
which correctly captures discontinuities and converges to the

physical weak solution of the problem

h q
where U = , F(U) = , b(U
MBS [ +543329h2] o
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Numerical Solution Procedure

First step

LeVeque & Yee (JCP, 1990) extended MacCormack’s method to
include source terms; this explicit predictor-corrector scheme
takes the form

. At
Ui =up- o [F(u,."+1) - F(uj")} + Atb(U)
1 At At
1 _ Z (yn o i *Y * = *
U= 2 (u, +U,) 5 [F(Uj) F(u,_1)} +5b(U)

where the notation U7 = U(Xx;, t,) was adopted, Ax is the grid
spacing and At is the time step; second-order accuracy is

achieved by first forward differencing and then backward

differencing Wa%m
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Numerical Solution Procedure

Second step

This reduces to solving the generalized one-dimensional
nonlinear diffusion equation of the form:

99 _ 9 g qoq
ot — 2Recotd 0x2 ' Thox

+ S afq +Sqg+ S

Since his known from the first step and remains constant
during the second step, the functions S, Sy, Sy are known
Discretizing the above equation using the Crank-Nicolson
scheme, imposing periodicity conditions, and using the output
from the first step as an initial condition, leads to a nonlinear
system of algebraic equations which was solved iteratively
using a robust algorithm which takes advantage of the structure
and sparseness of the resulting linearized system
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Results and Simulations

Computational parameters

The problem is completely specified by Re, cotd, We, ay, kp
Typical computational parameters used were:

Computational Domain: 0 < x < L

2
with A\p < L < 20)p, Ap = -

Kb
Grid Spacing: Ax = .01
Time Step: At =.002 for We =0
(smaller At required for We £ 0)
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Results and Simulations

Linear stability results for a, = 0

The steady-state flow is: gs = hs = 1

For all values of the wavenumber k and We, the flow is stable if
Re < 2 cotf, while for Re > 2 cotf instability occurs

The predicted onset of instability is in exact agreement with
previous analytical predictions (Benjamin, Benney & Yih) and
experimentally verified by Liu et al. (Phys. Fluids, 1995)
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Results and Simulations

Linear stability: a, # 0 case

The steady state solution is gs = 1 and hs(x) satisfies

5We 2
Soozs 1% ~ Fecom Bhshe — ()]

5cotf 5 ., 9\, 15
a ( 2Re s " 2Recotd® 7) 5~ 4Recotd®
5cotd , 5We ,,\ .3 Scotd 5 N2
— 7 h =
( 2Re (1=¢)+ ecot29C *  2Re * RecotH(C)

An approximate solution can be constructed in the form

hs(x) = 1+ (apke)h (x) +
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Results and Simulations

Periodic steady state solution
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Results and Simulations

Linear versus nonlinear resulis
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and kp = 27
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Results and Simulations

Evolution of flow rate

25
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Parameters:

ap = 0.1, kp = 27,
Re = 20, cotd = 15,
We =100,L = 20
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Results and Simulations

Evolution of flow rate
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Results and Simulations

Evolution of flow rate
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Summary

Concluding remarks

A mathematical model along with a numerical method to
simulate the flow down a wavy incline was presented

Numerically investigated the combined effect of bottom
topography and surface tension on the stability of the flow

For weak surface tension bottom topography acts to
stabilize the flow, while for stronger surface tension bottom
topography can destabilize the flow

Future work includes repeating the analysis for the case of
a porous wavy bottom and also to include thermocapillary
effects
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