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Figure 1.1: Spillway from Llyn Brianne Dam, Wales [115]. For an idea of the scale, the

width of the spillway is about 75 feet.

The spillway from the Llyn
Brianne Dam in Wales
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Figure 2.1: The picture on the left shows a laboratory experiment in which roll waves

appear on water flowing down an inclined channel. The fluid is about 7 mm deep and the

channel is 10 cm wide and 18 m long; the flow speed is roughly 65 cm/sec. Time series

of the free-surface displacements at four locations are plotted in the pictures on the

right. In the upper, right-hand panel, small random perturbations at the inlet seed the

growth of roll waves whose profiles develop downstream (the observing stations are 3 m,

6 m, 9 m and 12 m from the inlet and the signals are not contemporaneous). The lower

right-hand picture shows a similar plot for an experiment in which a periodic train was

generated by moving a paddle at the inlet; as that wavetrain develops downstream, the

wave profiles become less periodic and there is a suggestion of subharmonic instability.

Experiment taken
from Balmforth
and Mandre
(JFM, 2004)
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Previous studies

Flow down an inclined plane has received numerous studies:
pioneering experiments by Kapitza & Kapitza, 1949,
further experiments by Liu et al. (Phys. Fluids, 1995)
first analytical studies predicting onset of instability can be
traced back to Benjamin (JFM, 1957),
Yih (Phys. Fluids, 1963) and Benney (J Math. Phys., 1966)
numerical investigation by Ramaswamy et al. (JFM, 1996)
sinusoidal bottom topography was carried out by Balmforth
& Mandre (JFM, 2004)
effects of weak surface tension was considered by
Wierschem et al. (Acta Mech., 2005)
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Coordinate system

θ

g

x, u

z, w

h(x, t)

ζ(x)
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Equations of motion

∂u
∂x

+
∂w
∂z

= 0

ρ

(
∂u
∂t

+ u
∂u
∂x

+ w
∂u
∂z

)
= −∂p

∂x
+ gρ sin θ + µ

(
∂2u
∂x2 +

∂2u
∂z2

)
1
ρ

∂p
∂z

+ g cos θ − µ

ρ

∂2w
∂z2 = 0

If Re ∼ O(1), then above equations represent a second-order
approximation to the Navier-Stokes equations with respect to
shallowness parameter δ = H/L
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Interface conditions

Free surface conditions:

p = 2µ
∂w
∂z

− T (
∂2h
∂x2 + ζ ′′)

∂u
∂z

= 4(
∂h
∂x

+ ζ ′)
∂u
∂x

− ∂w
∂x

w =
∂h
∂t

+ u
∂h
∂x

+ uζ ′(x)

 at z = ζ(x) + h(x , t)

Bottom boundary conditions:

u + ζ ′(x)w = 0 and ζ ′(x)u − w = 0 at z = ζ(x)

⇒ u = w = 0 at z = ζ(x)
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Weighted residual method (Ruyer-Quil et al., 2002)

First eliminate pressure using

p = cosθ ρg(z1 − z)− µ
∂u
∂x

∣∣∣∣
z=z1

− µ
∂u
∂x

− T
∂2z1

∂x2 , z1 = h + ζ

Next, multiply momentum equation by weight function

W (x , z, t) = 2[h(x , t) + ζ(x)]z − z2 − [2h(x , t) + ζ(x)]ζ(x)

Depth-integrate and introduce: h(x , t) , q(x , t) =

∫ ζ+h

ζ
udz

To convert terms like:
∫ ζ+h

ζ
Wu2dz ,

µ

ρ

∂u
∂z

∣∣∣∣
z=ζ

assume the parabolic velocity profile: u(x , z, t) =
3q
2h3 W
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Dimensionless equations

In terms of h, q the dimensionless equations become

∂h
∂t

+
∂q
∂x

= 0

∂q
∂t

+
9
7

∂

∂x

(
q2

h

)
=

q
7h

∂q
∂x

+
5
2

cotθ
Re

(
h − ζ ′h − h

∂h
∂x

− q
h2

)
+

5
6

We
cot2θ

h
(

∂3h
∂x3 + ζ ′′′

)
+

1
Re cotθ

[
9
2

∂2q
∂x2 −

9
2h

∂q
∂x

∂h
∂x

+
4q
h2

(
∂h
∂x

)2

− 6q
h

∂2h
∂x2 −

5ζ ′q
2h2

∂h
∂x

− 15ζ ′′q
4h

− 5 (ζ ′)2 q
h2

]

where We =
TH
ρQ2 , Re =

ρQ
µ

and ζ(x) = ab cos(kbx)
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Begin by expressing equations in the form

∂h
∂t

+
∂q
∂x

= 0

∂q
∂t

+
∂

∂x

(
9
7

q2

h
+

5 cotθ
4Re

h2
)

= Ψ + χ

where Ψ = Ψ(h, q)

and χ = χ

(
x , h, q,

∂h
∂x

,
∂q
∂x

,
∂2h
∂x2 ,

∂2q
∂x2 ,

∂3h
∂x3

)

By: Serge D’Alessio With: J.P. Pascal Interfacial Instability



Introduction
Mathematical Formulation

Numerical Solution Procedure
Results and Simulations

Summary

Fractional-step method (LeVeque, 2002)

Decouple the advective and diffusive components, first solve

∂h
∂t

+
∂q
∂x

= 0

∂q
∂t

+
∂

∂x

(
9
7

q2

h
+

5 cotθ
4Re

h2
)

= Ψ(h, q)

over a time step ∆t , and then solve

∂q
∂t

= χ

(
x , h, q,

∂h
∂x

,
∂q
∂x

,
∂2h
∂x2 ,

∂2q
∂x2 ,

∂3h
∂x3

)
using the solution obtained from the first step as an initial
condition for the second step; the second step returns the
solution for q at the new time t + ∆t
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First step

This involves solving a nonlinear system of hyperbolic
conservation laws; express in vector form

∂U
∂t

+
∂F(U)

∂x
= b(U)

where U =

[
h
q

]
, F(U) =

[
q

9
7

q2

h + 5 cotθ
4Re h2

]
, b(U) =

[
0
Ψ

]
Utilize MacCormack’s method to solve this system; this is a
conservative second-order accurate finite difference scheme
which correctly captures discontinuities and converges to the
physical weak solution of the problem
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First step

LeVeque & Yee (JCP, 1990) extended MacCormack’s method to
include source terms; this explicit predictor-corrector scheme
takes the form

U∗
j = Un

j −
∆t
∆x

[
F(Un

j+1)− F(Un
j )

]
+ ∆t b(Un

j )

Un+1
j =

1
2

(
Un

j + U∗
j

)
− ∆t

2∆x

[
F(U∗

j )− F(U∗
j−1)

]
+

∆t
2

b(U∗
j )

where the notation Un
j ≡ U(xj , tn) was adopted, ∆x is the grid

spacing and ∆t is the time step; second-order accuracy is
achieved by first forward differencing and then backward
differencing
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Second step

This reduces to solving the generalized one-dimensional
nonlinear diffusion equation of the form:

∂q
∂t

=
9

2Re cotθ
∂2q
∂x2 +

q
7h

∂q
∂x

+ S1
∂q
∂x

+ S0q + S

Since h is known from the first step and remains constant
during the second step, the functions S, S0, S1 are known
Discretizing the above equation using the Crank-Nicolson
scheme, imposing periodicity conditions, and using the output
from the first step as an initial condition, leads to a nonlinear
system of algebraic equations which was solved iteratively
using a robust algorithm which takes advantage of the structure
and sparseness of the resulting linearized system
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Computational parameters

The problem is completely specified by Re, cotθ, We, ab, kb
Typical computational parameters used were:
Computational Domain: 0 ≤ x ≤ L

with λb ≤ L ≤ 20λb , λb =
2π

kb
Grid Spacing: ∆x = .01
Time Step: ∆t = .002 for We = 0
(smaller ∆t required for We 6= 0)
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Linear stability results for ab = 0

The steady-state flow is: qs = hs = 1
For all values of the wavenumber k and We, the flow is stable if
Re ≤ 5

6 cotθ, while for Re > 5
6 cotθ instability occurs

The predicted onset of instability is in exact agreement with
previous analytical predictions (Benjamin, Benney & Yih) and
experimentally verified by Liu et al. (Phys. Fluids, 1995)
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Linear stability: ab 6= 0 case

The steady state solution is qs = 1 and hs(x) satisfies

5We
6 cot2θ

h3
sh′′′

s −
2

Re cotθ
[3hsh′′

s − 2(h′
s)

2]

−
(

5 cotθ
2Re

h3
s +

5
2Re cotθ

ζ ′ − 9
7

)
h′

s −
15

4Re cotθ
ζ ′′hs

+

(
5 cotθ
2Re

(1− ζ ′) +
5We

6 cot2θ
ζ ′′′

)
h3

s =
5 cotθ
2Re

+
5

Re cotθ
(ζ ′)2

An approximate solution can be constructed in the form

hs(x) = 1 + (abkb)h(1)
s (x) + · · ·
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Periodic steady state solution
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Linear versus nonlinear results
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Evolution of flow rate
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ab = 0.1, kb = 2π,
Re = 20, cotθ = 15,
We = 100, L = 20
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Evolution of flow rate
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Evolution of flow rate
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Concluding remarks

A mathematical model along with a numerical method to
simulate the flow down a wavy incline was presented
Numerically investigated the combined effect of bottom
topography and surface tension on the stability of the flow
For weak surface tension bottom topography acts to
stabilize the flow, while for stronger surface tension bottom
topography can destabilize the flow
Future work includes repeating the analysis for the case of
a porous wavy bottom and also to include thermocapillary
effects
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