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Abstract
The magnetic pendulum represents an intriguing demonstration of chaotic
motion and unpredictability. Because of this it provides an excellent tool to
illustrate the challenges associated with weather prediction. Presented in this
note are numerical simulations of various paths traced out by the magnetic
pendulum which serve to highlight the well-known ‘butterfly effect’. A
mathematical model and computer program to solve the equations is
provided to allow for further exploration. An analogy between this
demonstration and weather prediction is also given.
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1. Introduction
The magnetic pendulum, shown in figure 1 is a
popular desktop toy having a small magnet at the
end of the pendulum and additional magnets on
the base of the apparatus. When released from rest
it swings freely under the influence of gravity and
the various magnets positioned on the base, and
will eventually come to rest over one of the mag-
nets. This demonstration illustrates an important
signature of non-linear systems known as ‘sensit-
ivity to initial conditions’ or the ‘butterfly effect’,
a term coined by Edward Lorenz [1].

The demonstrationwill illustrate the complic-
ated path followed by the pendulum before com-
ing to rest over one of the magnets. In fact, it is
easily observed that if the pendulum is repeatedly
released from initial positions that are close to one
another it will likely settle over a different magnet
each time. This scenario is captured in the next
section using numerical simulations to track the
trajectory of the pendulum.

2. Mathematical model and numerical
simulations
The motion of the pendulum was modelled using
the following set of second-order differential
equations [2]

d2x
dt2

+R
dx
dt

+Cx=
3∑
i=1

(xi − x)

[(xi − x)2 +(yi − y)2 +D2]3/2
,

(1)

d2y
dt2

+R
dy
dt

+Cy=
3∑
i=1

(yi − y)

[(xi − x)2 +(yi − y)2 +D2]3/2
.

(2)

Here, (x(t), y(t)) denotes the position of the pen-
dulum at time t in the x− y plane which coin-
cides with the base of the apparatus. The curve
traced out by all such points (x(t), y(t)) for 0≤
t<∞ corresponds to the trajectory that would
be observed when viewed from above. The para-
meter R is a measure of the damping force while
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Figure 1. The magnetic pendulum.

the parameter C can be interpretted as a spring
constant associated with the gravitational restor-
ing force. The right-hand sides of equations (1)
and (2) represent the magnetic force of attrac-
tion which is inversely proportional to the distance
squared from each magnet. The positions of the
magnets are denoted by (xi,yi) where i= 1, 2, 3
and the parameter D refers to the minimum dis-
tance between the pendulum and the base of the
apparatus.

The system of equations (1) and (2) was
solved numerically using the fourth-order Runge–
Kutta (RK4) algorithm [3]. Although there are
several Runge–Kutta algorithms, the RK4method
was used because of its simplicity, accuracy
and popularity. To implement the RK4 algorithm
equations (1) and (2) must first be expressed as a
system of first-order differential equations. This
can be achieved by introducing u= dx/dt and
v= dy/dt. Then the system given by equations (1)
and (2) now becomes

dx
dt

= u , (3)

du
dt

=−Ru−Cx+
3∑
i=1

(xi− x)
[(xi− x)2 +(yi− y)2 +D2]3/2

,

(4)

dy
dt

= v , (5)

dv
dt

=−Rv−Cy+
3∑
i=1

(yi− y)
[(xi− x)2 +(yi− y)2 +D2]3/2

.

(6)
To understand how the RK4 scheme works, con-
sider the following generic single first-order dif-
ferential equation

dz
dt

= f(z, t) subject to z(0) = z0 ,

for some function f (z, t). The RK4 scheme
advances the solution from time tn to time tn+1 =
tn+∆t using the marching algorithm given by

zn+1 = zn+
∆t
6

(k1 + 2k2 + 2k3 + k4) , (7)

where

k1 = f(zn, tn) , k2 = f

(
zn+

k1∆t
2

, tn+
∆t
2

)
,

k3 = f

(
zn+

k2∆t
2

, tn+
∆t
2

)
,

k4 = f(zn+ k3∆t, tn+∆t) .

Thus, starting with the initial value z0, sub-
sequent values z1,z2, · · · can easily be gener-
ated by using the recursion relation (7). Here,
zn is the computed solution at time tn while
zn+ 1 is the sought after solution at time tn+ 1.
This algorithm can easily be extended to the sys-
tem of differential equations given by (3)–(6).
The MATLAB program used to solve equations
(3)–(6) is provided as supplementary material1

(stacks.iop.org/PED/55/063002/mmedia).
Using the MATLAB program provided along

with the values R= .2, C= .5, D= .25 and

1 See MATLAB code submitted as supplemental material
which was used to numerically solve the equations of motion.
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Figure 2. Three computed pendulum trajectories
shown in different colours. The black asterisks denote
the base magnet locations. The initial positions of the
three pendulum trajectories were taken to be (-.95,.09),
(-.95,.095), (-.95,.1).

∆t= .01 simulations were conducted for the case
where the pendulum was released from rest, that
is, u(0)= v(0)= 0. Plotted in figure 2 are three tra-
jectories shown in the x− y plane. Each traject-
ory is indicated by a different colour and the ini-
tial positions of these trajectories, as indicated in
the figure caption, were taken to be close to one
another. The diagram reveals that a small change
in the initial position causes the pendulum to come
to rest over a different magnet. In other words,
in order to predict where the pendulum will end
up one would need to know the initial position
very accurately, and if this location is off by just
a little then the prediction would be wrong. This
is an example of what is commonly referred to as
the ‘butterfly effect’, that is, a butterfly flapping
its wings in one part of the world can change the
weather in another part of the world. It is because
of this simple concept that makes it difficult to
predict the weather far into the future. In order to
predict the weather far into the future one would
need to know the initial state of the atmosphere
very accurately. For example, at each point in the
atmosphere one would need to know the air speed,
temperature and pressure and if there is an error
in any one of these quantities at any one location
then that error would be responsible for limiting
how far into the future the prediction would be

meaningful. Because small changes in the initial
state of the atmosphere can lead to dramatically
different outcomes, the weather becomes unpre-
dictable over time.

The above illustration represents an example
of chaos. Many other possibilities can be explored
using the program. For example, a map can be
constructed whereby each point in the x− y plane
can be coloured in such a way that it is indicat-
ive of where the pendulum comes to rest when
released from rest from that point. Other possibil-
ities could include using non-zero initial speeds
or different parameter values for R, C and D.
Coding in MATLAB can even be explored. For
example, the program can be modified so that
equations (3)–(6) are solved using the second-
order Runge–Kutta (RK2) algorithm instead of
the fourth-order Runge–Kutta (RK4) algorithm. A
lot can be learned through these numerical exper-
iments!
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