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Abstract
This investigation takes advantage of the complicated behavior of the double
pendulum to highlight some well known techniques that can be used to bet-
ter understand the dynamics and solutions emerging from this rich problem.
Analytical and numerical methods are successfully applied and contrasted to
illustrate their usefulness and limitations. This blended analytical-numerical
approach to tackling this problem can be an effective resource to physics teach-
ers. The paper should be accessible to upper-year undergraduate physics and
mathematics students. Supplemental materials accompanying this work include
a MATLAB program to solve the equations of motion and an experimental
video; they are included to assist both students and teachers.
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1. Introduction

A pendulum can be defined as a suspended mass that is able to swing freely from a pivot.
The simple pendulum, which is a common experiment introduced in high school with histor-
ical importance [1], refers to the system consisting of a massless and inextensible rod that is
connected to a point-like mass. Although the simple pendulum offers a straightforward approx-
imate relationship between its period and length for small amplitudes of oscillation, the exact
relationship for an arbitrary amplitude is more complicated and is typically covered at the uni-
versity level. In general, any rigid body will swing under its own weight about a fixed point,
and this is referred to as a physical pendulum. The spherical pendulum denotes a pendulum
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that is free to move on a spherical surface, and the conical pendulum is a special case of a
spherical pendulum when the motion is confined to a horizontal plane [2].

There are several important applications associated with pendulums. For example, prior to
the advent of electronic timing devices, ballistic pendulums, consisting of a suspended block
of wood, were used to measure the speed of bullets [2]. By firing a bullet into the block of
wood and measuring the vertical rise of the block, the speed of the bullet can be deduced in
terms of the vertical rise, the mass of the bullet, and the mass of the block. In 1798 Henry
Cavendish constructed a torsional pendulum and used it as a balance to determine the grav-
itational constant, G = 6.67 × 10−11 m3 kg−1 s2, by measuring the angle of rotation of the
pendulum caused by the force of attraction between masses [3]. By applying Hooke’s law he
was able to relate G to the properties of the fiber used to suspend the pendulum. To illustrate
the effect of the Coriolis force caused by the Earth’s rotation, Jean Foucault in 1851 demon-
strated that the pendulum’s vertical plane of oscillation precessed at a rate related to the Earth’s
rotation, ω = 2π radians/day, and latitude of the pendulum [4]. Lastly, Christiaan Huygens
near the middle of the 17th century exploited the equal-time property of the brachistochrone to
construct a cycloidal pendulum which forced the period of the pendulum to be independent of
the amplitude of oscillation, and hence, improved the accuracy of pendulum clocks [4]. These
applications along with others are discussed in more detail in a recent video [5].

The focus of the present article is the double pendulum which can be described as one pen-
dulum suspended from another. This continues to be an intriguing problem on several levels
[6], and simulations of the double pendulum are readily available on the internet. Experi-
ments involving the double pendulum are usually used to highlight the basic concepts of chaos
and sensitivity to initial conditions [7–10]. Numerical simulations provides another means of
reinforcing these ideas and has the added benefit of illustrating the importance and role of
computation in physics [11, 12]. Further, because the system of equations governing the dou-
ble pendulum is nonlinear, it offers an opportunity to explore analytical techniques to derive
approximate solutions. Numerical simulations and comparisons between some numerical and
analytical results are conducted in this study. Although this investigation emphasizes analyti-
cal and numerical methods, some experimental results are also included along with the video
cited above which features a double compound pendulum.

The paper is structured as follows. In the next section we formulate the problem. Then, in
section 3 we present some approximate analytical solutions. A numerical solution procedure is
outlined in section 4, and is followed by a brief description of the experiments in section 5. The
results are discussed and compared in section 6, and a brief summary is given in the concluding
section.

2. Mathematical formulation

Before deriving the governing equations for the double pendulum, we first illustrate the formu-
lation procedure with the simple pendulum shown in figure 1. We consider a mass, m, allowed
to swing freely in the absence of friction on the end of a massless inextensible rod of length l
which is anchored at the origin in the x–z plane. Here, θ denotes the angle that the rod makes
with the vertical, and the vector�g refers to the acceleration due to gravity having a magnitude
denoted by g. In terms of l and θ, the coordinates, velocities and accelerations of the mass
are easily obtained with the understanding that a dot represents differentiation with respect to
time, t. From the free body diagram shown in figure 2, balancing the forces in the horizontal
and vertical directions yields
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Figure 1. Setup of the simple pendulum.

Figure 2. Free body diagram of the simple pendulum.

mẍ = −T sin θ, mz̈ = T cos θ − mg.

We next eliminate the tension, T, by multiplying the first equation by cos θ and the second
equation by sin θ and adding, which leads to

ẍ cos θ + z̈ sin θ = −g sin θ.

Substituting the expressions for ẍ, z̈ given in figure 1 then brings us to the familiar differential
equation given by

θ̈ +
g
l

sin θ = 0. (1)

Of course, this equation could more easily be obtained by working in terms of polar coordi-
nates. The approach adopted here will be useful when we consider the double pendulum.

For small amplitudes of oscillation we can approximate sin θ by θ. Equation (1) then
becomes
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θ̈ +
g
l
θ = 0,

and the solution satisfying the initial conditions that the pendulum is released from rest
(i.e. θ̇(0) = 0) with amplitude θ0 (i.e. θ(0) = θ0) is easily found to be

θ(t) = θ0 cos

(√
g
l

t

)
.

This approximation is quite reasonable for amplitudes in the range −10◦ < θ < 10◦, and
results in simple harmonic motion having a period, P, given by

P =
2π
ω

with ω =

√
g
l

, or P = 2π

√
l
g
. (2)

Retaining more terms in the expansion for sin θ would yield a better approximation and is
discussed in [13]. The exact solution to (1) can be obtained by invoking conservation of energy
as follows. If the pendulum of mass m is released from rest at an angle θ0 and we ignore air
resistance, then by conservation of energy we have

1
2

m(lθ̇)2 + mgl(1 − cos θ) = mgl(1 − cos θ0).

Using the trigonometric identity

cos θ = 1 − 2 sin2

(
θ

2

)
,

leads to the equation

θ̇2 =
4g
l

[
sin2

(
θ0

2

)
− sin2

(
θ

2

)]
.

If we next introduce Φ such that

sin Φ =
1
k

sin

(
θ

2

)
where k = sin

(
θ0

2

)
,

then it follows that

θ̇2 =

(
4k2 cos2 Φ

1 − k2 sin2 Φ

)
Φ̇2,

and our equation transforms to

Φ̇2 =
g
l

(1 − k2 sin2 Φ) or
dΦ
dt

=

√
g
l

√
1 − k2 sin2 Φ.

Separating the variables and integrating from Φ = 0 to Φ = π/2 (i.e. θ = θ0) which corre-
sponds to one quarter of the period, yields an expression for the period given by
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Figure 3. Setup of the double pendulum.

P = 4

√
l
g

∫ π/2

0

dΦ√
1 − k2 sin2 Φ

.

For small amplitude θ0, k ≈ θ0/2 and we can expand the integrand using the binomial series
and integrate term-by-term to obtain

P ≈ 4

√
l
g

∫ π/2

0

(
1 +

θ2
0

8
sin2 Φ+ · · ·

)
dΦ = 2π

√
l
g

(
1 +

θ2
0

16
+ · · ·

)
.

We see that the first term in the above recovers the expression given by (2), while all subsequent
terms will add a slight increase to the period.

We now consider the undamped double pendulum with masses m1 and m2 and lengths l1
and l2 as illustrated in figure 3. Making the same assumptions as with the simple pendulum,
the coordinates and accelerations of the masses are given by

x1 = l1 sin θ1, x2 = x1 + l2 sin θ2, z1 = −l1 cos θ1, z2 = z1 − l2 cos θ2,

ẍ1 = l1θ̈1 cos θ1 − l1θ̇
2
1 sin θ1, z̈1 = l1θ̈1 sin θ1 + l1θ̇

2
1 cos θ1,

ẍ2 = ẍ1 + l2θ̈2 cos θ2 − l2θ̇
2
2 sin θ2, z̈2 = z̈1 + l2θ̈2 sin θ2 + l2θ̇

2
2 cos θ2.

Free body diagrams for the top and bottom pendulums along with force balances in the hor-
izontal and vertical directions are shown in figures 4 and 5, respectively. Starting with the
bottom pendulum force balance equations, tension T2 can be eliminated by multiplying the
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Figure 4. Free body diagram of the top pendulum.

first equation by cos θ2 and the second equation by sin θ2 and adding. This yields the equation

ẍ2 cos θ2 + z̈2 sin θ2 = −g sin θ2.

Using the trigonometric identities

cos(θ2 − θ1) = cos θ2 cos θ1 + sin θ2 sin θ1,

sin(θ2 − θ1) = sin θ2 cos θ1 − sin θ1 cos θ2,

it follows that

ẍ2 cos θ2 + z̈2 sin θ2 = l2θ̈2 + l1θ̈1 cos(θ2 − θ1) + l1θ̇
2
1 sin(θ2 − θ1).

Similarly, multiplying the first equation by −sin θ2 and the second equation by cos θ2 and
adding leads to an expression for T2 given by

T2 = m2g cos θ2 + m2z̈2 cos θ2 − m2 ẍ2 sin θ2.

Lastly, substituting the expressions for ẍ2, z̈2, followed by the expressions for ẍ1, z̈1, then brings
us to the following equations

l2θ̈2 + l1θ̈1 cos(θ2 − θ1) + l1θ̇
2
1 sin(θ2 − θ1) = −g sin θ2, (3)

T2 = m2g cos θ2 + m2l1θ̇
2
1 cos(θ2 − θ1) + m2l2θ̇

2
2 − m2l1θ̈1 sin(θ2 − θ1). (4)

Turning now to the top pendulum force balance equations and applying a similar procedure
to eliminate the tension T1 leads to the equation

m1 ẍ1 cos θ1 + m1z̈1 sin θ1 = T2 sin(θ2 − θ1) − m1g sin θ1.

Noting that ẍ1 cos θ1 + z̈1 sin θ1 = l1θ̈1 and substituting the above known expression for T2

we arrive at the following equation

l1[m1 + m2 sin2(θ2 − θ1)]θ̈1 − m2l1 sin(θ2 − θ1) cos(θ2 − θ1)θ̇2
1 + m1g sin θ1

= m2 sin(θ2 − θ1)[l2θ̇
2
2 + g cos θ2]. (5)
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Figure 5. Free body diagram of the bottom pendulum.

Thus, the governing equations for the double pendulum can be rewritten in the following form(
1 +

m2

m1
sin2(θ2 − θ1)

)
θ̈1 −

m2

m1
sin(θ2 − θ1) cos(θ2 − θ1)θ̇2

1 +
g
l1

sin θ1

=
m2

m1
sin(θ2 − θ1)

(
l2
l1
θ̇2

2 +
g
l1

cos θ2

)
, (6)

θ̈2 +
g
l2

sin θ2 = − l1
l2

(sin(θ2 − θ1)θ̇2
1 + cos(θ2 − θ1)θ̈1). (7)

3. Approximate analytical solutions

Prior to pursuing analytical work it is customary to first cast the governing equations (6) and
(7) in dimensionless form. To achieve this we introduce the following parameters

M =
m2

m1
, L =

l2
l1

, τ =

√
g
l1

t, Δθ = θ2 − θ1,

where the quantities M and L denote the dimensionless mass and length ratios, τ denotes the
dimensionless time, and Δθ refers to the change between the angular displacements θ2 and θ1.
Then, the dimensionless equations now become

(1 + M sin2(Δθ))θ′′1 − M
2

sin(2Δθ)(θ′1)2 + sin θ1

= M sin(Δθ)(L(θ′2)2 + cos θ2), (8)

Lθ′′2 + sin θ2 = − sin(Δθ)(θ′1)2 − cos(Δθ)θ′′1 . (9)

Here, the prime is used to designate differentiation with respect to τ . Equations (8) and (9) rep-
resent a nonlinear coupled system of second-order differential equations that is too complicated
to solve exactly. Instead, approximate solutions will be explored in this section.
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If we restrict ourselves to small amplitudes of oscillation about the vertical, then we can
make the following approximations sin θ ≈ θ and cos θ ≈ 1. Further, all terms involving non-
linear products will be much smaller than linear terms, and hence, can be ignored. Doing this
yields the following linearized system of differential equations

θ′′1 + (1 + M)θ1 = Mθ2, (10)

Lθ′′2 + θ2 = −θ′′1 . (11)

These equations can easily be combined into a single fourth-order linear differential equation
given by

Lθ′′′′2 + (1 + M)(1 + L)θ′′2 + (1 + M)θ2 = 0. (12)

If we assume a solution of the form θ2(τ ) = A cos(ωτ + B), where A and B are arbitrary
constants, then the frequency ω must satisfy the quadratic equation in ω2

L(ω2)2 − (1 + M)(1 + L)ω2 + (1 + M) = 0, (13)

and the following solutions emerge

ω2
± =

(1 + M)(1 + L) ±
√

(1 + M)2(1 + L)2 − 4L(1 + M)
2L

. (14)

The solution for θ1 can then be determined by solving (10) from which it follows that

θ2 =

(
1 + M − ω2

±
M

)
θ1.

Hence, if the sign of (1 + M − ω2
±) is positive, then the pendulums are oscillating in-phase,

otherwise they are out-of-phase. Although the sign will depend on the values of the parameters
M and L, after some algebra it can be shown that

1 + M − ω2
± = (1 + M)(1 − L) ∓

√
(1 + M)2(1 − L)2 + 4LM(1 + M).

Expressed this way, it is clear that for all values of M and L, the frequency ω+ corresponds to
the out-of-phase (or antisymmetric) mode of vibration, while ω− corresponds to the in-phase
(or symmetric) mode of vibration.

We next illustrate an advantage of rendering the equations in dimensionless form by inves-
tigating two limiting cases. The first corresponds to the case when m1 � m2, or equivalently
M � 1. In this limit we can make the approximation M ≈ 0 in equations (8) and (9) and obtain

θ′′1 + sin θ1 = 0, (15)

Lθ′′2 + sin θ2 = − sin(Δθ)(θ′1)2 − cos(Δθ)θ′′1 . (16)

The effect of having a much heavier top mass is that the equations become decoupled; that
is, equation (15) does not involve θ2, and thus, in theory can be solved for θ1 and then sub-
stituted into (16) to obtain θ2. In fact, equation (15) is the dimensionless form of equation (1)
which indicates that the top pendulum behaves like a simple pendulum. Equation (16) then
describes a forced simple pendulum. For small amplitudes the top pendulum oscillates with a
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dimensionless frequency ω = 1 and dimensionless period P = 2π. This is in agreement with
equation (14), since setting M = 0 yields ω− = 1. Equation (16) can also be linearized to give

Lθ′′2 + θ2 = −θ′′1 .

If we assume that both pendulums are released from rest with initial amplitudes θ1,0, θ2,0, then
θ1(τ ) = θ1,0 cos(τ ), and the solution to the above equation becomes

θ2(τ ) =

(
θ2,0 −

θ1,0

1 − L

)
cos

(
τ√
L

)
+

θ1,0

1 − L
cos(τ ) for L 
= 1.

We note that we must avoid L = 1 since this would lead to resonance which will violate the
small amplitude assumption. Also, we observe that the frequency ω = 1/

√
L corresponds to

ω+ from equation (14) when M = 0. Thus, for M � 1 the two pendulums are decoupled
with the top pendulum oscillating with natural frequency ω− = 1 and the bottom pendulum
oscillating with natural frequency ω+ = 1/

√
L.

Another limiting case occurs when L � 1. In this limit we can make the approximation
1
L ≈ 0 after dividing equations (8) and (9) by L. The system then reduces to (θ′2)2 = 0 and
θ′′2 = 0 which admits the solution θ2(τ ) = C where C is an arbitrary constant. For large L
the roots of equation (14) are found to be ω− = 0 and ω+ =

√
1 + M. Once again the pen-

dulums become decoupled. This time the bottom pendulum is stationary since ω− = 0, and
thus, we can set the arbitrary constant C = 0. This finding is consistent with equation (2) since
ω =

√
g/l → 0 as l →∞. Setting θ2 = 0 in equation (8) and linearizing leads to

θ′′1 + (1 + M)θ1 = 0,

which reveals that the top pendulum oscillates with natural frequencyω+ =
√

1 + M in accor-
dance with equation (14).

We end this section by outlining a formal procedure for constructing an approximate solu-
tion to equations (8) and (9) valid for small amplitudes of oscillation. As we will shortly
see, this technique will reproduce the results obtained earlier in this section. This technique
is known as the method of multiple scales [14]. This method tackles equations possessing
multiple time scales by introducing slow and fast time variables. We begin by defining two
time scales: τ 0 = τ and τ 1 = ετ where 0 < ε � 1 is a small parameter. In addition, for small
amplitudes of oscillation we can set θ1 = εφ, θ2 = εψ and expand the following quantities in
a series in powers of ε

sin θ1 = sin(εφ) = εφ+ · · · , sin θ2 = sin(εψ) = εψ + · · · ,

sin(2Δθ) = sin(2ε(ψ − φ)) = 2ε(ψ − φ) + · · · ,

sin2(Δθ) = sin2(ε(ψ − φ)) = ε2(ψ − φ)2 + · · · ,

cos(Δθ) = cos(ε(ψ − φ)) = 1 − ε2

2
(ψ − φ)2 + · · · .

Lastly, we also expand φ and ψ in a series in powers of ε

φ = φ0 + εφ1 + · · · , ψ = ψ0 + εψ1 + · · · .

In terms of the time variables τ 0 and τ 1 the derivatives of a generic quantity

χ = χ0 + εχ1 + · · · ,

9
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(with χ = φ or χ = ψ) become

χ′ =
dχ
dτ

=
∂χ0

∂τ0
+ ε

(
∂χ0

∂τ1
+

∂χ1

∂τ0

)
+ · · · ,

χ′′ =
d2 χ

dτ 2
=

∂2χ0

∂τ 2
0

+ ε

(
2

∂2χ0

∂τ0∂τ1
+

∂2χ1

∂τ 2
0

)
+ · · · .

When these series are substituted into equations (8) and (9), a hierarchy of problems at
various orders of ε are obtained. The leading-order problem is given by the following coupled
system of linear partial differential equations

∂2φ0

∂τ 2
0

+ (1 + M)φ0 = Mψ0, (17)

L
∂2ψ0

∂τ 2
0

+ ψ0 = −∂2φ0

∂τ 2
0

. (18)

This system bears a close resemblance to the system given by (10) and (11), and can be solved
using a similar approach. We first combine (17) and (18) to obtain

L
∂4ψ0

∂τ 4
0

+ (1 + M)(1 + L)
∂2ψ0

∂τ 2
0

+ (1 + M)ψ0 = 0.

The solution is easily shown to be

ψ0(τ0, τ1) = A(τ1) cos(ωτ0 + B(τ1)),

where ω satisfies equation (13), and hence, has roots given by (14). The main difference here
is that A, B are not arbitrary constants, but rather arbitrary functions of τ 1. The solution for φ0

can be obtained by solving (17). By proceeding to the O(ε) problem we will show that A, B are
indeed constants and not functions. The O(ε) problem is governed by

∂2φ1

∂τ 2
0

+ (1 + M)φ1 − Mψ1 = −2
∂2φ0

∂τ0∂τ1
, (19)

L
∂2ψ1

∂τ 2
0

+ ψ1 +
∂2φ1

∂τ 2
0

= −2
∂2

∂τ0∂τ1
(φ0 + Lψ0). (20)

Now, in order for φ1,ψ1 to remain bounded we must set the right-hand-sides of (19) and (20)
to zero since they represent forcing terms that will give rise to resonance. This immediately
leads us to

∂2ψ0

∂τ0∂τ1
= − dA

dτ1
sin(ωτ0 + B(τ1)) − dB

dτ1
cos(ωτ0 + B(τ1)) = 0.

In order for this to hold for all τ 0 we require that

dA
dτ1

=
dB
dτ1

= 0,

and hence, A, B are constants. Thus, this approach yields the same solution previously obtained.

10
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Although it may appear more complicated, it provides a systematic procedure for obtaining
better approximations. However, the problems get more detailed as we proceed to higher orders
of ε.

4. Numerical method

We next present a numerical solution procedure to solve the system of equations (8) and (9).
We begin by rewriting equations (8) and (9) as a first-order system of autonomous coupled
differential equations by defining U = θ′1 and V = θ′2. Then system (8) and (9) can be expressed
as

dθ1

dτ
= F1(U), (21)

dU
dτ

= F2(θ1, U, θ2, V), (22)

dθ2

dτ
= F3(V), (23)

dV
dτ

= F4(θ1, U, θ2, V), (24)

where

F1(U) = U,

F2(θ1, U, θ2, V)

=
M sin(θ2 − θ1)[LV2 + cos θ2] + M

2 sin[2(θ2 − θ1)]U2 − sin θ1

1 + M sin2(θ2 − θ1)
,

F3(V) = V ,

F4(θ1, U, θ2, V) = − 1
L

sin θ2 −
1
L

sin(θ2 − θ1)U2

− 1
L

cos(θ2 − θ1)F2(θ1, θ2, U, V).

To numerically solve equations (21)–(24) the fourth-order Runge–Kutta (RK4) algorithm
[15] was adopted because of its simplicity, accuracy and popularity. When applied to the sys-
tem (21)–(24) the RK4 method advances the solution from time τ n to time τ n+1 = τ n +Δτ
according to the following marching algorithm

θ1,n+1 = θ1,n +
Δτ

6
(K1 + 2K2 + 2K3 + K4),

Un+1 = Un +
Δτ

6
(L1 + 2L2 + 2L3 + L4),

θ2,n+1 = θ2,n +
Δτ

6
(M1 + 2M2 + 2M3 + M4),

Vn+1 = Vn +
Δτ

6
(N1 + 2N2 + 2N3 + N4),

11
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where

K1 = F1(Un), L1 = F2(θ1,n, Un, θ2,n, Vn),

M1 = F3(Vn), N1 = F4(θ1,n, Un, θ2,n, Vn),

K2 = F1

(
Un +

L1Δτ

2

)
,

L2 = F2

(
θ1,n +

K1Δτ

2
, Un +

L1Δτ

2
, θ2,n +

M1Δt
2

, Vn +
N1Δτ

2

)
,

M2 = F3

(
Vn +

N1Δτ

2

)
,

N2 = F4

(
θ1,n +

K1Δτ

2
, Un +

L1Δτ

2
, θ2,n +

M1Δt
2

, Vn +
N1Δτ

2

)
,

K3 = F1

(
Un +

L2Δτ

2

)
,

L3 = F2

(
θ1,n +

K2Δτ

2
, Un +

L2Δτ

2
, θ2,n +

M2Δt
2

, Vn +
N2Δτ

2

)
,

M3 = F3

(
Vn +

N2Δτ

2

)
,

N3 = F4

(
θ1,n +

K2Δτ

2
, Un +

L2Δτ

2
, θ2,n +

M2Δt
2

, Vn +
N2Δτ

2

)
,

K4 = F1(Un + L3Δτ ),

L4 = F2
(
θ1,n + K3Δτ , Un + L3Δτ , θ2,n + M3Δt, Vn + N3Δτ

)
,

M4 = F3(Vn + N3Δτ ),

N4 = F4
(
θ1,n + K3Δτ , Un + L3Δτ , θ2,n + M3Δt, Vn + N3Δτ

)
.

Here, θ1,n, Un, θ2,n, Vn are the computed solutions at time τ n while θ1,n+1, Un+1, θ2,n+1, Vn+1

are the sought after solutions at time τ n+1. We note that for the special case consisting of a
single first-order differential equation where the right-hand-side function depends only on τ ,
the RK4 algorithm reduces to evaluating an integral using Simpson’s rule. In our simulations a
time step of Δt = 0.005 was used. The MATLAB program (titled ‘DoublePendulum.m’) used
to solve the above system of equations is provided as supplemental material [16].

5. Experimental details

Experiments were conducted using the double pendulum shown in figure 6 which consisted
of three aluminum flat bars hinged together as illustrated in the diagrams. As seen in the pho-
tographs, the double pendulum was constructed by attaching two physical pendulums together
end to end. The bar dimensions were 38 × 6 mm with two of the bars having lengths of 205 mm
while the third bar, which swings between the two longer bars, had a length of 180 mm. Each
of the top bars had a mass 124 g while the bottom bar had a mass of 110 g. The distance
between the pivots was 173 mm and the distance from the bottom pivot to the bottom edge of
the bar was 163 mm. Rotational friction was minimized by using stainless steel bearings as the
hinging mechanism. The double pendulum is connected to a small plate which enabled it to be
mounted to a supporting wall or a piece of wood.
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Figure 6. Three dimensional and side view of the double compound pendulum.

The experimental apparatus described above was used to illustrate and reinforce various
concepts. First, when the two pendulums forming the double pendulum were released from
small initial angles with the vertical, in-phase and out-of-phase periodic oscillations were
observed depending on the relative signs of the initial angles as predicted in section 3. On the
other hand, when the initial angles were large the motion was no longer periodic and quickly
became unpredictable.

Sensitivity to initial conditions is a characteristic feature of chaos. This distinctive feature of
chaos was visualized by arranging two double pendulums in tandem. This was accomplished
by mounting one double pendulum in front of the other. When the double pendulums were
released from the same small initial angles the two double pendulums were observed to oscil-
late synchronously for a long period of time. However, when they were released from large
initial angles the paths of the two double pendulums quickly diverged from each other despite
the attempts to have them exactly aligned at the start.

The observations described in this section are captured in the video [5] provided, and are
also illustrated in the numerical simulations reported in the next section.

6. Results and discussion

In this section we discuss some numerical simulations that were conducted and validate some
of the analytical predictions made in section 3. Here, we have used the parameter values

13
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Figure 7. Out-of-phase case with L = M = 1, α = π
18 and β = − π

18 .

M = L = 1 for all the numerical results presented. We begin with some simulations involving
small amplitudes of oscillation. As already explained, the linearized equations represent a rea-
sonable approximation to the fully nonlinear equations, and predicted two natural frequencies
given by (14). With L = M = 1 these frequencies are

ω1 = ω+ =

√
2 +

√
2 ≈ 1.85 and ω2 = ω− =

√
2 −

√
2 ≈ 0.77,

and can be associated with the out-of-phase and in-phase modes of vibration, respectively. The
periods corresponding to these frequencies are

P1 =
2π
ω1

≈ 3.40 and P2 =
2π
ω2

≈ 8.21.
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Figure 8. In-phase case with L = M = 1 and α = β = π
18 .

To verify this, simulations were carried out whereby the fully nonlinear equations (8) and (9)
were numerically solved subject to small amplitudes of oscillation. Shown in figure 7 are time
variations of θ1 (top diagram) and θ2 (bottom diagram) for an out-of-phase simulation where
the pendulums were released from rest with initial amplitudes of θ1(0) = α = π

18 radians, or
10◦, and θ2(0) = β = − π

18 radians, or −10◦. These plots reveal fluctuations that appear to be
periodic with a period that is close to P1. Figure 8 illustrates an in-phase simulation where the
pendulums were released from rest with initial amplitudes of θ1(0) = α = π

18 radians, or 10◦,
and θ2(0) = β = π

18 radians, or 10◦. This time the observed period is close to P2. Thus, we see
from these simulations that the fully nonlinear equations (8) and (9) are well approximated by
the linearized set of equations (10) and (11) for small amplitudes of oscillation.
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Figure 9. Angular displacements for the case L = M = 1, α = π
2 and β = 3π

4 .

Experiments were also conducted with small amplitudes of oscillation. The difficulty in
making comparisons between the experiments and the analyses arises from the fact that the
experiments involved a double compound (i.e. physical) pendulum while the mathematical
model, and hence numerical simulations, was formulated for a simple double pendulum. In
order to correct for this we made use of the following result. As previously noted, the period
for a simple pendulum executing a small amplitude of oscillation is given by

P = 2π

√
l
g

,
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Figure 10. Trajectories for the case L = M = 1, α = π
2 and β = 3π

4 .

while for a physical pendulum the corresponding expression for the period can be shown to
be [3]

P = 2π

√
I

mgD
,

where I denotes the moment of inertia about the point of suspension and D is the linear distance
from the point of suspension to the center of mass. For a uniform bar of length l the above
simplifies to [3]

P = 2π

√
2l
3g

. (25)

Before discussing the experimental out-of-phase and in-phase modes of vibration of the double
compound pendulum we first compared how our experiments agreed with equation (25). To
do this we removed the bottom pendulum by simply disconnecting the bottom bar shown in
figure 6. Using the data from the previous section equation (25) yields a period of P ≈ 0.68 s
which agreed well with the measured period of 0.74 s. Equipped with this we then computed
the out-of-phase and in-phase periods predicted by equation (14) for the double compound pen-
dulum. Using the data from the previous section it follows that L = 0.94 and M = 0.44, and the
dimensionless out-of-phase and in-phase periods are P1 ≈ 2.72 and P2 ≈ 9.38, respectively.
Then to convert to dimensional periods, rather than multiplying by

√
l1/g we made use of (25)

to account for the physical pendulum and multiplied by
√

2l1/3g. This yields P1 ≈ 0.29 s
and P2 ≈ 1.02 s. After releasing the double compound pendulum several times from small
initial angles and recording the periods, the average in-phase period was found to be 0.94 s.
Unfortunately, the out-of-phase period was too small to measure accurately with the equipment
available. Overall, the agreement between the theoretical and observed in-phase period is rea-
sonable given the approximation made. And since we already demonstrated that the numerical
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Figure 11. Separation between nearby trajectories with time.

simulations are in good agreement with the analysis, this shows indirectly that there is reason-
able agreement between the numerical simulations and the experiments for small amplitudes
of oscillation. For large amplitudes of oscillation this quantitative approach is not possible, and
we resort to qualitative comparisons as presented in the video [5].

We next consider a case where the initial amplitudes are not small. Portrayed in figure 9
are time variations of θ1 (top diagram) and θ2 (bottom diagram) for a simulation where the
pendulums were released from rest with initial amplitudes of θ1(0) = α = π

2 radians, or 90◦,
and θ2(0) = β = 3π

4 radians, or 135◦. Unlike the previous plots, there is no apparent period
associated with the motion. Further, the variations in the angular displacements appear to be
unpredictable. These are signatures of chaotic motion which is also suggested by the paths
traced out by the pendulums demonstrated in figure 10. The trajectory of the bottom pendulum
is shown in blue while that of the top pendulum is shown in red. The initial positions of the
pendulums are represented by the black lines, and the trajectories plotted span the time inter-
val 0 � τ � 25. As expected, the top pendulum will follow a circular path whereas the path
of the bottom pendulum appears to be chaotic. Another signature of chaotic motion is shown
in figure 11 which illustrates on a semilog scale how the separation, δ, between nearby initial
conditions seem to diverge exponentially in phase space as time evolves. As noted in the pre-
vious section, this behaviour is referred to as sensitivity to initial conditions. In this simulation
two trajectories released from rest at the same time were computed simultaneously: one hav-
ing initial conditions θ1(0) = π

2 , θ2(0) = 3π
4 , θ′1(0) = θ′2(0) = 0, and the second having initial

conditions θ1(0) = π
2 + δ0, θ2(0) = 3π

4 , θ′1(0) = θ′2(0) = 0. Here, δ0 = 0.01 denotes the initial
separation between the trajectories. The separation was then computed at each time step using
the Euclidean distance in phase space (θ1, U = θ′1, θ2, V = θ′2). The motion of the magnetic
pendulum reported in [17] also displays a similar behaviour, as does the motion of an inverted
pendulum discussed in [18].

We next verify that the motion is indeed chaotic by computing the Lyapunov exponents,
λi, associated with the exponentially diverging trajectories discussed above. Since our phase
space is four-dimensional, i = 1, . . . , 4 and we order the exponents so that λ1 is the largest and
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Figure 12. Convergence of the Lyapunov exponents.

λ4 is the smallest. The double pendulum system is described as being chaotic if at least one
Lyapunov exponent is positive. To compute the Lyapunov exponents the algorithm outlined in
[19] was utilized. This involved simultaneously solving the system (21)–(24) along with four
copies of the corresponding linearized system. The linearized system was used to compute
the evolution of small displacements about a point in phase space; the initial conditions were
chosen to be a set of 4 orthonormal vectors which form the axes of a four-dimensional sphere.
With time these vectors deform and diverge in magnitude, and will tend to follow the direction
of most rapid growth. Thus, the four-dimensional sphere becomes a four-dimensional ellip-
soid, and the lengths of the principal axes, pi(τ ), of the ellipsoid are related to the Lyapunov
exponents through the relation

λi = lim
τ→∞

1
τ

log2

(
pi(τ )
pi(0)

)
.

The Gram–Schmidt orthonormalization procedure was then employed to construct new
orthonormal bases as time progressed. Figure 12 displays the output from this calculation using
the initial conditions

θ1(0) =
π

2
, U(0) = 0, θ2(0) =

3π
4

, V(0) = 0.

Convergence in the values of the four Lyapunov exponents with time is evident in the diagram.
Although the plot shows the convergence over the interval 0 � τ � 100, the calculation was
carried out to τ = 10 000 since the convergence was observed to be slow. The converged values
were found to be λ1 ≈ 0.75, λ2 ≈ 0.28, λ3 ≈ −0.28,λ4 ≈ −0.75. Since λ1 > 0, this confirms
that the motion illustrated in figures 9–11 is chaotic. Lastly, we note that the four Lyapunov
exponents sum to zero; this is because the undamped double pendulum is a conservative system
[20], and thus, the volume defined by the principal axes (which grows like 2(λ1+λ2+λ3+λ4)τ )
remains constant.
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7. Summary

This paper applied some analytical and numerical methods to solve for the motion of the double
pendulum. New results are presented and discussed which complement our understanding of
this problem. Although this was largely an analytical and numerical study, some experimental
results involving a double compound pendulum were discussed and presented in the video [5]
which is added as supplemental material. Lastly, this work also emphasizes the importance and
joint roles of computation, analysis and experiment, which are powerful and effective tools in
physics education.
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