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Abstract
Suppose a tank initially full of water is drained through a small hole at the
bottom. At what rate does the water level drop? How long does it take to empty
the tank? A mathematical model is formulated to answer these questions. An
experiment is also conducted to check if the prediction agrees with observation.
A novel modification to the mathematical model is presented to bring theory and
observation in harmony. This involves accounting for the non-uniform velocity
profile through the exit hole. Unsteady effects resulting from the acceleration
of the fluid is also explored theoretically. The problem and solution procedure
is suitable for an introductory physics course.
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1. Introduction

Estimating the time to drain a tank, pond or reservoir is an important problem in engineering
and the applied sciences. Because of this it has received numerous investigations. We begin by
summarizing some previous studies. Various experimental studies ([1–9]) have been conducted
and several approaches have been advanced to bring theory and experiment in agreement. For
example, one approach involves introducing a coefficient of discharge, CD, defined as the ratio
of the actual discharge to the theoretical discharge which can be determined experimentally ([3,
7]). Another method accounts for the area of the exit hole when compared to the cross-sectional
area of the tank ([2, 5, 8]). If the area of the exit hole is not significantly smaller than that of
the tank, then the fluid acceleration can no longer be ignored. Including an energy loss term is
another strategy ([6]). For very small exit holes the effect of wetting can also be responsible
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Figure 1. Schematic illustration of the problem.

for disagreements between theory and measurements ([9]). Wetting refers to the ability of a
fluid to remain in contact with a solid surface, and is the result of the intermolecular forces
acting between the fluid and the surface. The time to empty a tank can also be determined
computationally, as in [10], by numerically solving the Navier–Stokes equations which are the
governing equations for fluid motion. Although this approach can capture the fine details in
the flow pattern, this level of accuracy is not always needed or required.

The present investigation attempts to tackle the drainage problem both theoretically and
experimentally using techniques that are accessible to an undergraduate student. A mathemat-
ical model is first derived and solved for different tank configurations. Then, comparisons are
made with a simple experiment for a specific tank configuration. Agreement between theory
and experiment is made by proposing a coefficient of discharge. Here, we offer a new physi-
cal interpretation of the coefficient of discharge in terms of the fluid velocity profile through
the exit hole. In addition, we also present a full exact solution for unsteady flow which to our
knowledge is missing in the literature.

2. Mathematical formulation

Consider a tank having the shape of a cylindrical bowl with height H as shown in figure 1.
Water is allowed to escape with velocity v through a small hole having an area a at the bottom.
At time t the water has a surface area A and water level denoted by h. Since we are dealing
with a cylindrical tank the cross-sectional area will be circular, and thus A = πr2 where r is
the radius at time t. In a small time Δt the water level will drop by Δh. Because the density is
constant the principle of conservation of mass is equivalent to conservation of volume, and so
the change in water volume in the tank must equal that leaving the tank. In differential form
this can be written as follows

−AΔh = avΔt,
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where the minus sign indicates that h is decreasing. As Δt → 0 the above can be expressed as
a differential equation (DE) given by

dh
dt

= −av
A
. (1)

Although the area of the hole, a, is constant, v, A and of course h will vary with time t. In order
to solve (1) we need to specify how v and A depend on h or t.

We can use Torricelli’s law [11] to relate v to h. Evangelista Torricelli, who lived from 1608
to 1647, was an Italian physicist and mathematician. In addition to observing principles of fluid
flow, he is also remembered for his invention of the barometer and for his work on estimating
the value of the acceleration due to gravity. This law states that if we ignore all forms of fric-
tion the fluid velocity as it exits the hole will be given by v =

√
2gh which corresponds to the

velocity a drop of fluid would have if released from rest from a height h. Actually, Torricelli’s
law follows from Bernoulli’s equation [11] which for steady flow can be expressed as
either

P + ρgh +
1
2
ρv2 = constant or P1 + ρgh1 +

1
2
ρv2

1 = P2 + ρgh2 +
1
2
ρv2

2 . (2)

Here, P is the pressure, ρ is the fluid density, and g is the acceleration due to gravity. The
subscripts 1 and 2 refer to different points along the path of a fluid parcel. In the absence
of friction, this equation is essentially a statement of conservation of energy for an ideal, or
inviscid, fluid. If we take point 1 to be the water surface and point 2 to coincide with the
hole, then P1 = P2 = Patm where Patm refers to atmospheric pressure, and h1 − h2 = h. Setting
v1 = 0 (to be explained shortly) yields v2 =

√
2gh which is Torricelli’s Law.

Let us first consider the special case where A is constant, that is, the tank is a right-circular
cylinder. If we make the approximation that the water level falls slowly in comparison with
the emergent velocity as it exits the hole, then v1 ≈ 0, and from Torricelli’s Law equation (1)
becomes

dh
dt

= −a
√

2gh
A

,

which is a nonlinear separable first-order DE that one finds in many textbooks, such as
[12, 13]. Separating the variables we obtain

∫ 0

H

dh√
h
= −a

√
2g

A

∫ T

0
dt.

Integrating (noting that the integral on the left-hand-side is an improper integral) yields the
following expression for the time T to drain the entire tank

T =
A
a

√
2H
g
. (3)

The height of the water level as a function of time can also easily be determined and is
given by

h(t) =

(√
H − a

√
2g

2A
t

)2

.
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We can even account for the moving water level by applying Bernoulli’s equation. In this
case instead of making the approximation v1 ≈ 0 we set v1 = dh/dt. Using equation (2) this
leads to

v2 =

√
2gh +

(
dh
dt

)2

. (4)

Inserting (4) into equation (1) for v and solving yields the time

T =

√
2H
g

(
A2

a2
− 1

)
. (5)

In the limit that A2/a2 � 1, then (5) reduces to (3) as expected. Thus, the impact of accounting
for the moving water level is to reduce the time. This makes sense since the velocity given by (4)
exceeds that given by Torricelli’s law. It is important to emphasize the underlying steady flow
assumption. In reality, this is an approximation since the flow will be unsteady. The steady flow
assumption/approximation refers to a situation when the tank drains slowly meaning that the
acceleration of the falling liquid surface is much smaller than the acceleration due to gravity.
As explained in [5, 8], if A2/a2 � 1 this is a good approximation. In the appendix we present
the full solution corresponding to unsteady flow.

Another common tank configuration is the conical or funnel-shaped tank. We take the top
radius to be R1 and the bottom radius to be R0 � R1. For this configuration the height, h, is
related to the radius, r, through the relation

h =
H(r − R0)
(R1 − R0)

,

where H is the height of the tank. Using

A = πr2 = π

(
R0 +

(R1 − R0)h
H

)2

, a = πR2
0, v =

√
2gh.

Equation (1) becomes

dh
dt

= −
√

2gh(
1 + (R1−R0)h

R0H

)2 .

Again, separating the variables and integrating leads to the following expression for the time
T to empty the full tank

T =

√
2H
g

(
8

15
+

4R1

15R0
+

3
15

[
R1

R0

]2
)
.

We note that if R1 = R0 then a = A and the fluid will accelerate out of the bottom with accel-
eration g, and thus, the flow is clearly unsteady. Here, the mathematical model breaks down
since the assumption A2/a2 � 1 is violated. This case is addressed in the appendix.
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3. The clepsydra

We next consider the general case where the shape of the tank is given by h = crn where c and
n are constants. Then it follows that

A =
π

c
2
n

h
2
n .

Using Torricelli’s law equation (1) again leads to a nonlinear separable first-order DE given by

dh
dt

= −ac
2
n
√

2g
π

h
n−4
2n .

Although this equation is straight forward to solve, we will focus on a particular shape. We
notice that if n = 4 the above simplifies to

dh
dt

= −a
√

2gc
π

= constant.

Hence, the water level falls at a constant rate, and so this tank shape corresponds to a water
clock, or clepsydra. Water clocks represent an ancient time-measuring device invented in
Egypt. The time to empty the tank is easily shown to be

T =
πH

a
√

2gc
. (6)

It is worth noting that if A in equation (3) is set equal to the area at the top of the tank (i.e. when
h = H), then the time given by (6) is exactly half that of (3). In other words, it takes twice as
long to drain a right-circular cylindrical tank than it does to drain a clepsydra that fits exactly
inside the right-circular cylindrical tank.

An alternate approach to discovering the interesting property of the clepsydra can be
achieved by combining volumes of revolution and related rates as illustrated in the following
two-part exercise.

Exercise. A bowl of height h is obtained by rotating the curve y = x4 about the y-axis.

(a) Show that the volume of water, V(h), that the bowl can hold is given by

V(h) =
2π
3

h
3
2 .

(b) Suppose the bowl is filled with water and allowed to leak from a small hole in the bottom.
If the rate at which the volume of water leaking out of the hole per unit time is given by
α
√

h where α is a constant, show that the rate dh/dt at which the water level drops in the
bowl is constant.

4. Experimental validation and discussion

An experiment was designed to see how closely the observed time to drain a tank agrees with
the predicted time given by (6). A video of the experiment, which is available for viewing,
was created and is provided as supplemental material. The experimental apparatus, shown
in figure 2, consisted of a plastic cylindrical tank, a wooden stand, and a beaker to capture
the drained water. A clepsydra-shaped bowl given by h = cr4 was accurately machined from
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Figure 2. Experimental set up.

a cylindrical section of plastic. The values of various parameters including the tank dimen-
sions are: H = 16 cm, a = π/16 cm2, c = 1/16 cm−3, g = 981 cm s−2. For this configuration
A2/a2 = 256 � 1 where A refers to the area at the top of the tank. Thus, the steady flow
assumption is a reasonable approximation. Of course, as the water level nears the bottom of the
tank the acceleration of the fluid becomes more important. Using these values the predicted, or
theoretical, time is T = 23.1 s. By placing a ruler beside the tank and measuring how long it
took the water to fall by 1 cm at various instances during the draining we were able to confirm
that the water level fell at a nearly uniform rate. However, after running numerous experiments
the average observed time to empty the tank was T = 29.2 s which exceeds the predicted value
by 26.4%, and is well beyond any experimental error. This suggests that the observed rate of
fall deviates considerably from the theoretical rate. It is worth mentioning that including the
effect of the moving water level cannot resolve the discrepancy because as we already saw
for the right-circular cylinder it will decrease the predicted time, and hence will worsen the
agreement.

In an attempt to improve the agreement between theory and observation a modification to
the mathematical model was made. This involved accounting for a non-uniform velocity profile
through the opening at the bottom as shown in figure 3. It is well known that the fluid velocity
along a surface or wall is zero. This is a result of friction brought on by viscous forces and is
referred to as the no-slip condition [14]. Thus, we propose the following empirical power-law
velocity profile through the opening given by

v(r)
v0

=

[
1 −

( r
R

)k
]

where v0 =
√

2gh, (7)
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Figure 3. Velocity profiles through the opening.

Figure 4. Empirical velocity profiles.

where R denotes the radius of the hole and k is a free parameter. This empirical formula incor-
porates a lot of physics. For example, we notice that v = 0 when r = R in order to comply
with the no-slip condition. Also, for laminar, or streamlined, flow it yields the exact parabolic
profile which corresponds to k = 2 [14]. Lastly, for turbulent, or chaotic, flow we expect the
(time-averaged) profile to become flatter near the center and steeper at the wall which are char-
acteristic features of turbulent flow. As shown in figure 4, equation (7) is able to mimic such a
profile as k increases. In fact, in the limit as k →∞ we obtain the uniform profile v =

√
2gh

given by Torricelli’s law.
Up to this point the effects of friction have been ignored. Inside the tank and away from the

opening at the bottom this is justified because of the significantly smaller fluid velocity and
larger radius. However, at the exit the fluid velocity will be much greater due to the smaller
opening, and so the effects of friction are no longer negligible. Since frictional losses are pro-
portional to the gradient in velocity, the losses from the walls inside the tank are expected to
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be much smaller than the losses at the exit. Using the power-law velocity profile given by (7),
the average velocity through the opening, denoted by v̄, can be determined as follows

v̄ =
1

πR2

∫ R

0
2πrv(r)dr =

2
√

2gh
R2

∫ R

0
r

[
1 −

( r
R

)k
]

dr =

(
k

k + 2

)√
2gh. (8)

So, instead of using the velocity v =
√

2gh in equation (1), it makes more sense to use v = v̄.
In order for the theoretical time to be in agreement with the observed time we require that

k
k + 2

=
theoretical time
observed time

≈ 0.8.

Solving this yields k = 8. We emphasize that the value of k will depend on the tank configura-
tion. Once the k value for a given tank is known, it can be used to predict important quantities
such as the rate at which the water level falls, the height of the water level at a given time,
and more. The k value is also indicative of the nature of the flow through the exit hole. For
example, if k is close to 2 then the flow is laminar; however, if the value is large then the flow
is highly turbulent. Since k = 8 in our case, we are dealing with turbulent flow. The effect of
the assumed velocity profile is to reduce the exit velocity through the opening by a factor of
CD = k/(k + 2). It is conceivable that for some tank configurations the coefficient of discharge
can be close to unity, but in general CD < 1. A worthwhile laboratory experiment would be to
determine k for various tank configurations. For example, this could include using tanks in the
shape of a right-circular cylinder having the same tank diameter and height, but different exit
hole diameters, or funnel-shaped tanks which are readily available in hardware stores.

5. Summary

This investigation revisited the drainage problem both experimentally and theoretically.
Although the experimental set up was very simple, it was easy to perform in a laboratory
and did not require sophisticated equipment. Also, most experimental studies have focused on
a cylindrical tank whereas here we presented a clepsydra-shaped tank. The new contributions
arising from this study are twofold. First, we provided an alternate interpretation of the coef-
ficient of discharge by relating it to the non-uniform velocity profile through the exit hole. An
empirical profile was proposed which can reproduce the exact profile for laminar flow and can
mimic turbulent profiles as well. Second, the influence of the fluid acceleration was explored
theoretically. An exact solution to the general unsteady problem was found and it was shown
that as the ratio of the area of the exit hole to that of the tank shrinks to zero the unsteady
effects vanish. Lastly, the approach and techniques used in this study are fully accessible to an
undergraduate student in physics.
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Appendix

Here, we consider the unsteady flow of an inviscid fluid through a small hole of area a at the
bottom of a cylindrical tank having a height H and a constant cross-sectional area A. It can be
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shown ([2, 5, 8, 14]) that the instantaneous height of the fluid above the bottom, h(t), satisfies
the following nonlinear second-order DE

h

(
g +

d2h
dt2

)
=

1
2

(
dh
dt

)2 [A2

a2
− 1

]
. (A1)

As noted in [5], if g � d2h/dt2 then the left-hand-side of (A1) can be replaced by simply
gh and the solution of (A1) yields a drainage time T given by equation (5). This amounts to
ignoring the acceleration of the fluid, and thus, is termed quasi-steady flow. We now consider
the case when the term d2h/dt2 is not negligible.

As done in [2], we first cast equation (A1) in dimensionless form by introducing

η =
h
H

, τ =

√
g

2βH
t where β =

A2

a2
− 1,

with the understanding that β > 1 and usually β � 1. Then equation (A1) becomes

2η
d2η

dτ 2
− β

(
dη
dτ

)2

+ 4βη = 0. (A2)

We want to solve equation (A2) subject to the initial conditions

η = 1,
dη
dτ

= 0 at τ = 0.

Setting V = dη/dτ to denote the dimensionless velocity and using the Chain rule to write

dV
dτ

=
dV
dη

dη
dτ

= V
dV
dη

=
1
2

d
dη

(
V2

)
,

transforms equation (A2) to the linear first-order DE given by

dχ
dη

− β

η
χ = −4β, (A3)

where χ = V2. The solution to (A3) satisfying χ(1) = 0 (which follows from the initial
condition V(η = 1) = 0) is easily found to be

χ(η) =
4β

(β − 1)

[
η − ηβ

]
.

Hence,

V =
dη
dτ

= ±μ
√
η − ηβ where μ =

√
4β

β − 1
. (A4)

Since dη/dτ < 0 we will take the negative root. This also means that η < 1 for all τ > 0.
We note that in the limit that β →∞ the dimensionless velocity approaches V = −2

√
η (since

ηβ → 0) which is the dimensionless version of equation (1) after applying Torricelli’s law.
From this we observe that the term ηβ in equation (A4) accounts for the acceleration of the
fluid. We also note that the solution given by (A4) is in full agreement with that obtained
in [8].
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We next solve equation (A4) to determine η which extends the work presented in [8]. We
begin by separating the variables∫ η

η0

dx√
x − xβ

= −μ

∫ τ

0
dt,

and recall from the Binomial series that

1√
1 − x

=
∞∑

n=0

(2n)!xn

22n(n!)2
for |x| < 1.

Thus,

1√
x − xβ

=
1√
x

1√
1 − xβ−1

=
1√
x

∞∑
n=0

(2n)!xn(β−1)

22n(n!)2
=

∞∑
n=0

(2n)!xn(β−1)− 1
2

22n(n!)2
,

for |x| < 1. Inserting this series into the above integral and integrating term-by-term leads to

∞∑
n=0

(2n)!(
n(β − 1) + 1

2

)
22n(n!)2

[
ηn(β−1)+ 1

2 − η
n(β−1)+ 1

2
0

]
= −μτ.

We note that the above series converges provided η < 1. For this reason we replaced the initial
condition η(0) = 1 with η(0) = η0 where η0 < 1 and can be made arbitrarily close to unity.
This guarantees that η � η0 < 1 for all τ � 0. Expanding the first two terms of the series we
obtain

2[
√
η −√

η0] +
1

(2β − 1)

[
ηβ−

1
2 − η

β− 1
2

0

]
+ · · · = −

√
4β

β − 1
τ ,

where the first term on the left-hand-side represents the solution for quasi-steady flow while
all the remaining terms are contributions arising from the acceleration of the fluid. As a check,
if we let β →∞ then μ→ 2 and only the first term in the series survives; the expansion then
reduces to

2[
√
η −√

η0] = −2τ.

Setting η0 = 1 yields η = (1 − τ )2 which corresponds to dimensionless version of the solution

h(t) =

(√
H − a

√
2g

2A
t

)2

,

presented earlier, which is the expected result.
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