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Abstract
Derived in this article is a mathematical model of a cyclist riding over uneven
terrain. The model is very general; it is expressed in terms of arbitrary functions
that describe how the elevation changes with horizontal distance and how the
cyclist’s power output varies, and also accounts for road friction and air resis-
tance. The model was validated by considering special cases such as horizontal
and inclined surfaces. Although the governing equation is too complicated to
solve exactly for the general case, a numerical solution procedure is proposed
and tested. In addition, an approximate analytical solution procedure is out-
lined. As an illustration some numerical results are presented for the case of a
cyclist riding over rolling hills. The adopted approach is well suited for under-
graduate students in mathematical physics. The formulation equally applies to a
vehicle driving over a variable landscape. This work also unites concepts from
physics with mathematical modelling and coding. Lastly, a video abstract is also
provided.

Keywords: cycling, mathematical model, air resistance, road friction, variable
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1. Introduction

Mathematical modelling is an effective tool that can be used to simulate various problems and
outcomes. In this investigation a novel two-dimensional mathematical model is proposed to
simulate a cyclist riding over a varying terrain. The model accounts for road friction and air
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Figure 1. The position vector�r(t) of a cyclist riding along a variable landscape y(x).

resistance and is expressed in terms of a user-specified terrain. The cyclist’s power output can
also be specified. Such a model can assist cyclists in their training over various landscapes.
Cyclists can count on having two dependable training partners: the force of the wind and the
force of gravity. Both of these are captured in this model.

The application of science in sport has evolved significantly over the years. In particular, the
sport of cycling has benefitted tremendously from the works of Burke [1], Burke and Newsom
[2], Gregor and Conconi [3], and Glaskin [4], to list a few. More recently, Dahmen, Wolf
and Saupe [5] have formulated a mathematical optimization problem by blending a mechanical
model of cycling with a simple physiological model for the exertion of an athlete to compute
optimal riding strategies for time trials on mountain ascents. The fundamentals and scientific
principles covered in these studies have guided this research and helped shape the proposed
mathematical model which will be presented shortly.

The paper is structured as follows. In the next section the problem is formulated mathemat-
ically and expressed as a nonlinear differential equation for the cyclist’s position and velocity
with time. In section 3 various special cases are considered which admit exact solutions. An
analytical technique for constructing an approximate solution is also presented to tackle the
general case. Then in section 4 a numerical solution procedure is outlined and used to simu-
late a cyclist riding over a sinusoidally varying terrain. Section 5 is devoted to summarizing
the study. Although the model was derived to simulate the velocity of a cyclist, it can also be
used to simulate that of a vehicle driving over a variable landscape. Further, this investigation
also emphasizes the importance of scientific computation and analytical techniques.

2. Mathematical formulation

We consider a cyclist riding along an uneven road. At each instant in time the position of the
cyclist is specified using a Cartesian coordinate system. As illustrated in figure 1, for two-
dimensional motion the position vector of the cyclist is given by

�r(t) = (x(t), y(t)), (1)

where x(t) and y(t) are the horizontal and vertical positions, respectively, of the cyclist at
time t.
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Figure 2. A sketch illustrating the various forces acting on the cyclist.

The velocity, �̇r, and acceleration, �̈r, vectors then become

�̇r = (ẋ, y′ ẋ), (2)

�̈r = (ẍ, y′ ẍ + y′′ ẋ2), (3)

where dots represent derivatives with respect to t while the primes refer to derivatives with
respect to x. The unit tangent, �T , and normal,�n, vectors are

�T =
(1, y′)√
1 + (y′)2

�n =
(−y′, 1)√
1 + (y′)2

, (4)

with �T pointing in the direction of motion and �n pointing into the air. Applying Newton’s
second law of motion yields

�F = M�̈r, (5)

where �F denotes the net force and M is the combined mass of the cyclist and bicycle. The
various forces acting on the cyclist as shown in figure 2 include

�F = �Fair +
P
v
�T + M�g + N�n − μN�T ,

where �Fair is the aerodynamic force, P is the cyclist’s power output, v = |�̇r| = ẋ
√

1 + (y′)2

is the speed, M�g = (0,−Mg) is the gravitational force with g denoting the acceleration due
to gravity, N is the normal force, and μ is the coefficient of static rolling friction which
will depend on the road type and tire. Here, we have ignored drive train friction and have
absorbed the effect of dynamic rolling resistance into the aerodynamic force. It is assumed
that all the power generated by the cyclist is transmitted to the wheels, that is, the efficiency
is 100%.
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At low velocities air resistance is well approximated by the relation �Fair = −kv�T where k
is the coefficient of air resistance and its value depends on the dimensions and shape of the
cyclist and the density of air (Meade [6]). Often, values for the quantity k

M are reported. If
wind is present then air resistance will be proportional to the difference between the velocity
of the cyclist and the wind velocity, denoted by �V , and is given by �Fair = −k(v − Vw)�T. Here,
Vw is the component of the wind velocity in the direction of motion of the cyclist; it is pos-
itive for a tailwind and negative for a headwind. Although a cross wind can have a swaying
effect on a cyclist, theoretically it does no work and therefore will be ignored. As expected, a
tailwind reduces air resistance, and when the tailwind exceeds the cyclist’s velocity then air
resistance will actually assist the cyclist rather than oppose the motion. At higher velocities
air resistance is proportional to the square of the velocity and is given by �Fair = − 1

2ρACdv
2�T

where ρ is the density of air, A is the frontal area of the cyclist and bicycle, and Cd is the drag
coefficient (Timmerman and van der Weele [7]). The wind velocity can easily be incorporated
by replacing v2 with (v − Vw)2 and if v � Vw we can simply ignore the effect of the wind.
Changes in air density and gravity as a result of cycling up or down a hill are negligible and
will be ignored. The actual formula to be used for air resistance will depend on the specific
situation we are considering and can be written as �Fair = − fair�T where fair = k(v − Vw) or
fair =

1
2ρACd(v − Vw)2.

We next decompose equation (5) in the directions of �T and �n. Since the vectors �T and �n are
orthogonal, it immediately follows that

¨

�r = (
¨

�r · �T)�T + (
¨

�r ·�n)�n =
[(1 + (y′)2)ẍ + y′y′′ ẋ2]√

1 + (y′)2
�T +

y′′ ẋ2√
1 + (y′)2

�n,

�g = (�g · �T)�T + (�g ·�n)�n = − gy′√
1 + (y′)2

�T − g√
1 + (y′)2

�n.

By examining the forces in the �n direction we obtain

N =
M(g + y′′ ẋ2)√

1 + (y′)2
. (6)

Substituting this result for N into the equation in the �T direction leads to the following second-
order, nonlinear differential equation

[1 + (y′)2]ẍ + y′y′′ ẋ2 = − fair

M

√
1 + (y′)2 +

P
Mẋ

− gy′ − μ(g + y′′ ẋ2). (7)

For a given terrain y(x) and a specified power output P (which could vary with time, t)
equation (7) can be solved for x(t) subject to initial conditions for x and ẋ. Listed in table 1 are
parameter values that will be used in this study.

3. Analytical solutions

In this section we present some special cases which admit exact solutions and an approximate
analytical solution procedure for the general case.
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Table 1. Values used for various parameters.

Parameter Symbol Value

Acceleration due to gravity g 9.8 m s−2

Combined mass M 85 kg
Air density ρ 1.2 kg m−3

Frontal area A 0.3 m2

Drag coefficient Cd 0.8
Coefficient of air resistance k/M 0.025 s−1

Coefficient of rolling friction μ 0.025

3.1. Level terrain

In this situation y = y′ = y′′ = 0 and equation (7) reduces to

M
dv
dt

=
P
v
− fair − μMg, (8)

where v = ẋ. An exact solution to (8) has been obtained and will be presented in section 3.4.
The solution is complicated and not very insightful. The important feature of the solution is
that if a cyclist starts from rest and rides into a headwind with constant power P, then with
fair = k(v − Vw) the cyclist quickly reaches a steady-state velocity, vs, given by

vs = −1
2

(
μgM

k
− Vw

)
+

√
P
k
+

1
4

(
μgM

k
− Vw

)2

.

Using the values in table 1 along with P = 250 W and Vw = −3 m s−1 (10.8 km hr−1) (i.e. a
headwind) we find that vs ≈ 6.2 m s−1 (22.3 km hr−1). With a tailwind of Vw = 3 m s−1 under
the same conditions vs ≈ 8.0 m s−1 (28.7 km hr−1).

3.2. Uphill climbing velocity

Here, y = x tanα, y′ = tanα, y′′ = 0 where tanα denotes the constant uphill slope. Setting
u = ẋ sec α, the uphill velocity, then equation (7) becomes

M
du
dt

=
P
u
− fair − Mg sin α− μMg cos α. (9)

If we ignore air resistance (i.e. fair = 0) and suppose a cyclist can generate a constant power
output of P while climbing, then the cyclist will eventually attain a constant climbing velocity,
uc, given by

uc =
1

(sin α+ μ cos α)

(
P

Mg

)
.

We see that the climbing velocity is proportional to the ratio P
Mg which is known as the power-

to-weight ratio. It immediately follows that a lighter cyclist has a clear advantage. Using
the values in table 1 along with α = 7◦ (which corresponds to a grade of 12.3% where the
%grade = 100 tanα) and P = 250 W we find that uc ≈ 2.0 m s−1 (7.4 km hr−1).
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3.3. Downhill coasting velocity

Suppose a cyclist starts from rest on top of a hill having a constant inclination of α and height
H, and coasts down the hill without pedalling (i.e. P = 0) or applying the breaks. In this case
y = −x tanα, y′ = −tanα, y′′ = 0; again setting u = ẋ sec α, the downhill velocity, then with
fair =

1
2ρACdu2 (i.e. zero or negligible wind) equation (7) simplifies to

M
du
dt

= −1
2
ρACdu2 + Mg sin α− μMg cos α. (10)

Using the Chain Rule we can write du
dt = du

ds
ds
dt = u du

ds where s refers to the distance travelled
down the incline. Equation (10) can then be cast in the form

u
du
ds

= γ − Γu2 where γ = g(sin α− μ cos α) and Γ =
ρACd

2M
.

Separating the variables leads to

∫ uf

0

u du
γ − Γu2

=

∫ H
sin α

0
ds,

and integrating yields the final velocity, uf , given by

uf =

√
γ

Γ

(
1 − exp

(
− 2HΓ

sin α

))
.

The terminal velocity, denoted by uT, occurs when the left-hand side of equation (10) is zero.
This means that the forces on the right-hand side exactly balance and the cyclist travels at a
constant velocity given by

uT =

√
γ

Γ
.

As expected limH→∞ uf = uT. Using the values in table 1 along with α = 7◦ and H = 100 m
we find that uf ≈ 22.9 m s−1 (82.6 km hr−1) while uT ≈ 23.7 m s−1 (85.3 km hr−1). Recall
that the terminal velocity of a skydiver in a belly-to-earth free fall position is about 54 m s−1

(195 km hr−1).
Repeating this calculation with fair = ku leads to the following equation for uf

(
k
M

)
uf + γ ln

[
1 −

(
k
M

)
uf

γ

]
+

(
k
M

)2 H
sin α

= 0,

which can only be solved numerically. Again, using the values from table 1 together with
α = 7◦, H = 100 m and Newton’s method (Burden and Faires [8]) to estimate the root yields
uf ≈ 27.2 m s−1 (97.9 km hr−1) which exceeds the value found above since the air resistance
has been reduced. Here, the terminal velocity is given by

uT =

(
M
k

)
γ,

and computes to uT ≈ 38.0 m s−1 (137 km hr−1).
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As a final case we will ignore air resistance and use the principle of conservation of energy.
We will also account for the rotational kinetic energy of the wheels. Conservation of energy
requires that

MgH =
1
2

Mu2
f + 2

(
1
2

Iω2

)
+

μMgH
tan α

,

where the term on the left-hand side represents the potential energy at the top of the hill and
the terms on the right-hand side represent the translational kinetic energy, rotational kinetic
energy and energy lost to road friction, respectively, at the bottom of the hill. Here, I is the
moment of inertia of a wheel and ω is the angular velocity of the wheel. If we approximate the
wheel as a thin disk, then I = 1

2 mwR2 where R is the radius of the wheel and mw is its mass.
Also, ω = uf/R and thus Iω2 = 1

2 mwu2
f . Solving the above equation for uf gives

uf =

√
2gH

(
1 − μ

tan α

)(
M

M + mw

)
.

Since M � mw we can safely neglect the rotational kinetic energy of the wheels and obtain

uf ≈
√

2gH
(

1 − μ

tan α

)
.

Using the same values as above we find that uf ≈ 39.5 m s−1 (142 km hr−1). It comes as no
surprize that the final velocity surpasses the values found in the previous cases.

3.4. Slowly varying terrain

Since an exact solution to equation (7) is out of reach we propose a strategy to obtain an
approximate analytical solution. For cycling considerations it is fair to say that a chosen riding
route can be classified as slowly varying. By this we mean that the vertical length scale is
significantly smaller than the horizontal length scale, or equivalently the slope at any location
is small. To put this in perspective a gradient of 10% is considered to be fairly steep for a
cyclist, while for the expansion we are about to use this is sufficiently small. We can exploit
this slowly varying property by casting equation (7) in dimensionless form. Let L denote a
horizontal length scale, h a vertical length scale, and U a velocity scale. Then

x = Lx∗, y = hy∗, t =
L
U

t∗, P =
MU3

L
P∗, fair =

MU2

L
f ∗

air,

where the asterisk denotes a dimensionless quantity. In dimensionless form and dropping the
asterisks for notational convenience equation (7) becomes

[1 + ε2(y′)2]ẍ + ε2y′y′′ ẋ2 = − fair

√
1 + ε2(y′)2 +

P
ẋ
− εβy′ − μ(β + εy′′ ẋ2),

(11)

where ε = h
L 	 1 and β = gL

U2 . Since ε is a small parameter we can construct an approximate
solution for x using a regular perturbation method (Logan [9]). This involves seeking a solution
for x in the form of a series given by

x = x0 + εx1 + · · · .
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Substituting this into (11) produces a hierarchy of problems at various orders of ε. The function
y(x) = y(x0 + εx1 + · · ·) can be expanded using a Taylor series as follows

y(x) = y(x0 + εx1 + · · · ) = y(x0) + εx1y′(x0) + · · · .

Lastly, the initial conditions, x(0) and ẋ(0), need to be expressed as

x(0) = x0(0) + εx1(0) + · · · , ẋ(0) = ẋ0(0) + εẋ1(0) + · · · .

Since x(0) and ẋ(0) are constants independent of ε, it follows that x0(0) = x(0), ẋ0(0) = ẋ(0)
and x1(0) = ẋ1(0) = · · · = 0.

The leading-order problem satisfies

v̇0 = − fair +
P
v0

− μβ, (12)

and represents the dimensionless version of equation (8) with v0 = ẋ0. This corresponds to the
solution over level terrain. Taking fair = Γ1(v − Vw) where Γ1 = kL

MU equation (12) becomes

v̇0 = −Γ1

v0

[(
v0 −

c
2Γ1

)2

− K

]
, (13)

where

c = Γ1Vw − μβ, K =
P
Γ1

+
c2

4Γ2
1

.

For the case when P is constant the exact solution to (13) is given by(
v0 − c

2Γ1

)2
− K(

vi − c
2Γ1

)2
− K

=

⎡
⎣
(
vi − c

2Γ1
+
√

K
)(

v0 − c
2Γ1

−
√

K
)

(
vi − c

2Γ1
−
√

K
)(

v0 − c
2Γ1

+
√

K
)
⎤
⎦

c
2Γ1

√
K

e−2Γ1t,

where vi = v0(0) is the initial velocity. As discussed in section 3.1, this transient solution will
quickly approach the steady-state velocity given by

vs =
c

2Γ1
+
√

K.

The solution for x0(t) can be obtained by integrating v0(t) and imposing the initial condition
x0(0) = 0. This will yield a complicated expression for x0(t).

The first-order problem is governed by the equation

v̇1 +

(
Γ1 +

P
v2

0

)
v1 = −βy′(x0) − μy′′(x0)v2

0, (14)

and satisfies the initial conditions x1 = v1 = 0 at t = 0 where v1 = ẋ1. The terms involving
y′(x0) and y′′(x0) on the right-hand side account for an uneven terrain. Based on the solution for
v0, an exact solution to (14) for v1 will be very complicated. We can, however, make analytical
progress by circumventing the transient solution v0 since this short-lived solution has negligible
influence at later times. This can be achieved by enforcing the steady-state velocity, vs, as the
initial condition for v0 (i.e. set vi = v0(0) = vs). Doing this yields the solution v0(t) = vs, that
is, the velocity remains constant with time. Thus, x0(t) = vst and equation (14) simplifies to

v̇1 +

(
Γ1 +

P
v2

s

)
v1 = −βy′(vst) − μv2

s y′′(vst), (15)
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which now takes the form of a linear, non-homogeneous, first-order differential equation with
constant coefficients for v1 and can be solved once y(x) is specified. Hence, the approximate
solution for the velocity to first order becomes v(t) ≈ vs + εv1(t).

The equations for the subsequent terms in the series get increasingly more complicated and
difficult to solve analytically. Fortunately, as we will see in the next section, the approximate
solution, vs + εv1(t), yields good agreement with the numerical solution of equation (11).

4. Numerical simulations

A numerical method was implemented to solve (7). To accomplish this we have adopted the
fourth-orderRunge–Kutta (RK4) algorithm (Recktenwald [10]) because of its simplicity, accu-
racy and popularity. In order to apply this technique equation (7) was expressed as the following
coupled system of first-order differential equations

ẋ = G1(w) = w,

ẇ = G2(x,w) = − y′y′′w2

[1 + (y′)2]
− fair

M
√

1 + (y′)2
+

P
Mw[1 + (y′)2]

− gy′

[1 + (y′)2]
− μ(g + y′′w2)

[1 + (y′)2]
.

When applied to this system the RK4 method advances the solution from time tn to time
tn+1 = tn +Δt according to the marching algorithm given by

xn+1 = xn +
Δt
6

(m1 + 2m2 + 2m3 + m4) ,

wn+1 = wn +
Δt
6

(k1 + 2k2 + 2k3 + k4) ,

where

m1 = G1(wn), k1 = G2(xn,wn),

m2 = G1

(
wn +

k1Δt
2

)
, k2 = G2

(
xn +

m1Δt
2

,wn +
k1Δt

2

)
,

m3 = G1

(
wn +

k2Δt
2

)
, k3 = G2

(
xn +

m2Δt
2

,wn +
k2Δt

2

)
,

m4 = G1(wn + k3Δt), k4 = G2(xn + m3Δt,wn + k3Δt).

Here, xn,wn are the computed solutions at time tn while xn+1,wn+1 are the sought after solu-
tions at time tn+1. For the parameter values listed in table 1 a time step of Δt = 0.1 s was
used. The MATLAB programme (titled ‘RollingHills.m’) used to solve the above system of
equations is provided as supplemental material [11].

A simulation was conducted to mimic a cyclist riding over rolling hills with zero wind. The
terrain was prescribed using

y(x) = A cos

(
2πx
λ

)
,

9
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Figure 3. Velocity, elevation and distance versus time for a cyclist riding over rolling
hills with air resistance.

where A = 100 m and λ = 7, 500 m. To illustrate the impact of air resistance simulations were
carried out with and without air resistance. Air resistance was incorporated using fair = kv.
The cyclist’s power output was held constant at P = 250 W. The initial velocity was taken
to be the steady-state velocity vs given in section 3.1 for the case with air resistance, and the
steady-state velocity uc given in section 3.2 with α = 0 for the case without air resistance. To
test our numerical solution procedure a comparison was made with the MATLAB inbuilt solver
ode45 and the agreement was excellent.

In the following figures positions are given in metres, m, time in seconds, s, and velocities
are reported in metres per second, m s−1. The simulations spanned a time interval of 1 h. Shown
in figure 3 are the velocity, elevation and distance travelled versus time for the case with air
resistance. The corresponding plots without air resistance are displayed in figure 4. Comparing
figures 3 and 4 we observe a significant increase in the maximum velocity reached, 54.8 m s−1

(197 km hr−1) in figure 4 versus 24.6 m s−1 (88.6 km hr−1) in figure 3, as well as a signifi-
cant increase in the total distance travelled, 44.2 km in figure 4 versus 21.1 km in figure 3. We
see that air resistance reduces the maximum velocity and the total distance travelled by slightly
more than a factor of two. In reality, the maximum velocities would be less because one does not
typically pedal while descending. Since the power was held constant at P = 250 W this means
that the cyclist was pedalling both up and down the hills in this simulation. We also notice that
there is little change in the minimum velocity for the two cases, 2.8 m s−1 (10.1 km hr−1) in
figure 4 versus 2.6 m s−1 (9.4 km hr−1) in figure 3. This makes sense since air resistance has
little effect at low velocities. In general, without air resistance the curves displayed in figure 4
can be characterized as having short intervals with rapid changes followed by longer intervals
with much less variation. The curves shown in figure 3 with air resistance, on the other hand,
show more gradual changes when compared to those in figure 4. Lastly, it is interesting to note
that the maximum velocity occurs somewhere between the position of the maximum downhill
slope and the bottom of the hill. The minimum velocity, on the other hand, occurs close to the
position where the uphill slope is greatest. This is confirmed in figure 5 where the velocity and
elevation are plotted versus the x position for the case with air resistance. For the landscape
profile shown in figure 5 the downhill slope is greatest at x = 1, 875 m, x = 9, 375 m and

10
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Figure 4. Velocity, elevation and distance versus time for a cyclist riding over rolling
hills without air resistance.

Figure 5. Velocity and elevation versus position x for a cyclist riding over rolling hills
with air resistance.

x = 16, 875 m whereas the uphill slope is greatest at x = 5, 625 m, x = 13, 125 m and
x = 20, 625 m. Also, the bottom of the hills occur at x = 3, 750 m, x = 11, 250 m and
x = 18, 750 m.

As a final note we present a comparison between the analytical solution given by (15) and
the numerical solution of equation (11) for the case discussed above. In dimensionless form
the rolling hills terrain is given by y(x) = cos(2πx) and equation (15) becomes

v̇1 +

(
Γ1 +

P
v2

s

)
v1 = 2πβ sin(2πvst) + 4π2μv2

s cos(2πvst).

11
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Figure 6. Comparison between the analytical and numerical solutions with ε = 0.05,
β = 10, Γ1 = 1, μ = 0.025, P = 5 and vs = (−μβ +

√
4Γ1P + μ2β2)/(2Γ1).

The exact solution is easily found to be

v1(t) = c1 sin(2πvst) + c2[cos(2πvst) − exp(−γ0t)],

where

c1 =
2π(γ0β + 4π2μv3

s )
4π2v2

s + γ2
0

, c2 =
4π2vs(μγ0vs − β)

4π2v2
s + γ2

0

, γ0 = Γ1 +
P
v2

s
.

Plotted in figure 6 is a comparison in velocity between the approximate and numerical solu-
tions. The numerical solution was obtained using the MATLAB solver ode45. The diagram
reveals good agreement. As ε decreases the agreement will improve while as ε increases it
worsens. The agreement would also improve if more terms in the series are included. The
approximate solution provides insightful information that a numerical solution cannot. For
example, it is able to predict mathematical expressions for the period and amplitude of the
oscillatory behaviour.

5. Summary

A mathematical model describing a cyclist riding over uneven terrain has been formulated in
terms of a nonlinear differential equation. The derived model is capable of handling any ter-
rain and incorporates several parameters that can be prescribed to account for road friction, air
resistance and the cyclist’s power output. Although exact solutions have been found for spe-
cial cases, the general case can only be solved numerically. An approximate analytical solution
procedure was also proposed. This involved casting the equation in dimensionless form and
identifying a small parameter. An approximate solution was then constructed in the form of
an expansion in powers of this small parameter. This technique was successful in retaining the
dominant terms in the equation. The goal behind an approximate analytical solution proce-
dure is to be able to simplify the equation so as to obtain a closed form mathematical solution
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which not only adds insight into the problem but also agrees well with the numerical solu-
tion. The approximate solution obtained in this investigation was indeed found to be in good
agreement with the numerical solution. A successful numerical solution procedure was also
presented and tested against the inbuilt MATLAB solver ode45. The numerical scheme was
then utilized to simulate a cyclist riding over a sinusoidally varying terrain. The simulations
revealed that air resistance plays a significant role in the dynamics. In the simulations pre-
sented it reduced the maximum velocity and the total distance travelled by about a factor of
two. Lastly, this study served as an example of the application of mathematical modelling and
coding to a real-life problem. Although the formulation focussed on a cyclist riding along a
variable landscape it could easily apply to a vehicle driving along an uneven road surface.
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