Faculty of Mathematics

Centre for Education in Mathematics and Computing

CHASI NG I MAGI NARY TRI ANGLES

By: Serge D'Alessio \& Ian VanderBurgh

Problem

A right-angled triangle has a perimeter (P) of 10 and an area (A) of 5 . What is the length of its hypotenuse (h)?

$$
y \underbrace{}_{x} \quad P=x+y+h, A=\frac{1}{2} x y, h=\sqrt{x^{2}+y^{2}}
$$

Question 1

Given a right-angled triangle with given area A and given perimeter P, how can we easily find its hypotenuse?

Solution: From the diagram we have

$$
A=\frac{1}{2} x y, P=x+y+h, h^{2}=x^{2}+y^{2} .
$$

Substituting $h=\sqrt{x^{2}+y^{2}}$ into the second equation gives

$$
\begin{aligned}
x y & =2 A, \\
x+y+\sqrt{x^{2}+y^{2}} & =P
\end{aligned}
$$

which we can solve for x and y and then substitute back to obtain h.

Alternate Solution:

Proceed as follows:

$$
\begin{aligned}
P-h & =x+y \\
(P-h)^{2} & =(x+y)^{2} \\
P^{2}-2 P h+h^{2} & =x^{2}+2 x y+y^{2} \\
P^{2}-2 P h+h^{2} & =h^{2}+4 A \\
P^{2}-4 A & =2 P h \\
h & =\frac{P^{2}-4 A}{2 P}
\end{aligned}
$$

In the given example, $h=\frac{10^{2}-4(5)}{2(10)}=4$. This method avoids solving for the lengths of the sides of the triangle (which could be messy).

Question 2

Given a right-angled triangle with given integral area A and given integral perimeter P, when is the length of the hypotenuse also an integer?

Solution: For h to be an integer, we require $2 P \mid\left(P^{2}-4 A\right)$. Since $2 P$ is even, then $P^{2}-4 A$ must be even, so P must be even. Setting $P=2 p$ (so p is also an integer) our condition becomes
$\left.4 p\left|\left(4 p^{2}-4 A\right) \Leftrightarrow p\right|\left(p^{2}-A\right) \Leftrightarrow p\left|A \Leftrightarrow \frac{1}{2} P\right| A \Leftrightarrow P \right\rvert\, 2 A$
Thus, any right-angled triangle where the perimeter divides twice the area will have a hypotenuse with integer length. In our problem, $P=10$ and $A=5$ so the above condition is satisfied.

However,

when solving the initial problem by calculating the sides of the triangle x and y, an interesting result emerges. Using $h=4$, as previously calculated, x and y must satisfy

$$
\frac{1}{2} x y=5, x+y=6
$$

which gives $x(6-x)=10$ or $x^{2}-6 x+10=0$. Solving yields $x=3 \pm i$. So this triangle doesn't actually exist!

What went wrong?!

Question 3

Given a "right-angled triangle" with given area A and given perimeter P, what conditions on A and P guarantee that the "triangle" actually exists?

Solution: Recalling our initial equations

$$
A=\frac{1}{2} x y, P=x+y+h
$$

and using our result for h in terms of P and A we obtain

$$
x y=2 A, x+y=P-\frac{P^{2}-4 A}{2 P}=\frac{P^{2}+4 A}{2 P}
$$

Solving the second equation for y and substituting, gives

$$
\begin{aligned}
x\left(\frac{P^{2}+4 A}{2 P}-x\right) & =2 A \\
2 P x^{2}-\left(P^{2}+4 A\right) x+4 A P & =0
\end{aligned}
$$

Thus, for the triangle to actually exist, the discriminant must be non-negative, i.e.

$$
\begin{aligned}
\left(P^{2}+4 A\right)^{2}-4(2 P)(4 A P) & \geq 0 \\
\Leftrightarrow P^{4}+8 A P^{2}+16 A^{2}-32 A P^{2} & \geq 0 \\
\Leftrightarrow P^{4}-24 A P^{2}+16 A^{2} & \geq 0
\end{aligned}
$$

Aside: Using our original numbers,

$$
P^{4}-24 A P^{2}+16 A^{2}=10^{4}-24(5)\left(10^{2}\right)+16\left(5^{2}\right)=-1600<0
$$

which confirms our finding that the triangle does not exist.

We can manipulate this inequality further, although

$$
P^{4}-24 A P^{2}+16 A^{2} \geq 0
$$

is a nice result. Dividing through by A^{2}, we obtain

$$
\left(\frac{P^{2}}{A}\right)^{2}-24\left(\frac{P^{2}}{A}\right)+16 \geq 0
$$

Solving this quadratic inequality, we obtain

$$
\frac{P^{2}}{A} \geq 12+8 \sqrt{2} \quad \text { or } \quad \frac{P^{2}}{A} \leq 12-8 \sqrt{2}
$$

which is equivalent to

$$
P^{2} \geq(12+8 \sqrt{2}) A \quad \text { or } \quad P^{2} \leq(12-8 \sqrt{2}) A
$$

or

$$
P \geq(2+2 \sqrt{2}) \sqrt{A} \quad \text { or } \quad P \leq(2 \sqrt{2}-2) \sqrt{A}
$$

Imposing the constraint $h>0$, requires $P^{2}-4 A>0$ or $P>2 \sqrt{A}$. Therefore, the second of the inequalities yields a triangle with real sides, but negative hypotenuse. How did that happen?

The first inequality is consistent with $P>2 \sqrt{A}$.

Thus, the "right-angled triangle" with area A and P is a bona-fide triangle if and only if $P \geq(2+2 \sqrt{2}) \sqrt{A}$.

Aside: Returning to our original triangle having $P=10$ and $A=5$, we find that $(2+2 \sqrt{2}) \sqrt{A} \approx 10.8$, which clearly violates the above condition and again confirms that such a triangle does not exist.

We next proceed to offer a geometric interpretation of the condition $P \geq(2+2 \sqrt{2}) \sqrt{A}$.

Consider the hyperbola $x y=c$ and a line tangent to this curve at point $M\left(a, \frac{c}{a}\right)$ as shown below.

We can easily determine that the slope of the tangent line to be $-\frac{c}{a^{2}}$ and the equation of the tangent line to be $y=-\frac{c}{a^{2}} x+\frac{2 c}{a}$. We observe that M is the midpoint of the x-intercept $(x=2 a)$ and the y-intercept $\left(y=\frac{2 c}{a}\right)$ of the tangent line. More interesting, though, is the fact that:
the area of the right-angled triangle formed by the tangent line and the coordinate axes is the same, regardless of where M is located on the hyperbola.
In particular, $A=2 c$. As we let M move along the hyperbola, every possible shape of triangle with area $A=2 c$ will be achieved.

Now, the perimeter of the above-mentioned triangle is given by

$$
P=2 a+\frac{2 c}{a}+\sqrt{4 a^{2}+\frac{4 c^{2}}{a^{2}}} .
$$

Substituting $c=\frac{1}{2} A$ into this expression yields

$$
P=2 a+\frac{A}{a}+\sqrt{4 a^{2}+\frac{A^{2}}{a^{2}}} .
$$

Since we have established that A is constant for all triangles, we can think of this as a (differentiable) function of a single variable a, where $0<a<\infty$. Because $P \rightarrow \infty$ as $a \rightarrow 0, \infty$ and $P>0$ for all $a \in(0, \infty)$, it is clear that P must possess an absolute minimum. (Aside: Strangely enough, as $a \rightarrow 0, \infty$ the perimeter grows without bound, yet the area remains constant!)

The minimum value can be found by setting $\frac{d P}{d a}=0$, where

$$
\frac{d P}{d a}=2-\frac{A}{a^{2}}+\frac{4-\frac{A^{2}}{a^{4}}}{\sqrt{4+\frac{A^{2}}{a^{4}}}}
$$

This leads to $a=\sqrt{\frac{A}{2}}$.
Thus, $P_{\min }=P\left(a=\sqrt{\frac{A}{2}}\right)=(2+2 \sqrt{2}) \sqrt{A}$, from which the condition $P \geq(2+2 \sqrt{2}) \sqrt{A}$ immediately follows.

Thank You!

